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"small data" system identification

# of samples

problem ill-posed ill-conditioned well-cond.

cost fun. — local minima → convex

solution non-unique sensitive robust

theoretical — few results asymptotic
results analysis

proposed method:

1. (u,y) �→ h — impulse response estimation
using prior knowledge

2. h �→ model — realization



Computing the D-optimal Zero Order Hold Input for 

Wiener Models with fixed Power Nonlinearity

Alexander De Cock
Johan Schoukens

What is the most informative
input to excite this system?
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What is the input class?
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Two-experiment approach to Wiener system identification
G. Bottegal (TU/e), R. Castro-Garcia (KUL), J.A.K. Suykens (KUL)
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u(t) = sin(ωt) −→ x(t) = Aω sin(ωt + φω)

Estimation of f (·) = regression problem + additional parameter φω

1 Parametric approach for general basis functions

2 Least-squares approach for polynomial nonlinearity

3 Nonparametric approach
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Technology) 
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Delft Center for Systems and Control 

Gray-Box Identification using Difference-
of-Convex Programming 



Learning Non-linear Dynamics
A. D. Ialongo, M. van der Wilk, C. E. Rasmussen

• Distribution over transition
functions

• Infer system dimensionality

• Impute missing information

• Fully analytic variational
approximation

I No need for sampling,
inference by
optimisation



Complementary and extended Kalman
filters for orientation estimation
Manon Kok1 and Thomas B. Schön2

1: Department of Engineering, University of Cambridge, UK
2: Department of Information Technology, Uppsala University, Sweden

We study the relationship between
I complementary filters
I and extended Kalman filters

for orientation estimation using inertial and
magnetometer measurements.

Contribution: A complementary filter
highlighting similarities and differences
between these two filters.



KTH ROYAL INSTITUTE
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Model selection for change point detection and clustering
Problem: estimate the mean of a signal, assuming it is piece-wise constant and

can take only a small number of levels.

In the poster:

I Bayesian selection framework for
this problem

I Model selection criteria for the
estimator

I Oracle inequality for the estimator
I An adaptive upper bound of the

risk
I And more...

Othmane Mazhar, Cristian Rojas, Carlo Fischione, Mohammad Reza HesamzadehOthmane Mazhar, Cristian Rojas, Carlo Fischione, Mohammad Reza Hesamzadeh



Distributed nonparametric identification
of acyclic dynamic networks

Riccardo Sven Risuleo and Håkan Hjalmarsson

Upstream
network

д Downstream
network

Can we estimate д using local information only?



• Given family of cost 
functions 
we train an optimization 
solver to perform as good as 
possible for fixed number of 
iterations. 

 

• We extend this by 
parameterizing a family of 
algorithms and learn 
parameters for minimizing a 
function given a fixed 
number of iterations. 

Learning an optimization solver 

for a class of inverse problems 
Jonas Adler, Johan Karlsson, Axel Ringh, and Ozan Öktem 
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State-space model

xt | xt−1 ∼ fθ(xt | xt−1)

yt | xt ∼ gθ(yt | xt)

Estimation

θ̂ = arg maxθ p(y1:T | θ)

Using particle filters

, Unbiased estimates of p(y1:T|θ)
/ Stochastic estimates of p(y1:T|θ)

→ Showstopper for conventional optimization

Question

If we run the particle filter with some θk−1, can
we re-use these particles to also estimate
p(y1:T|θ′)? (θ′ in the neighborhood of θk−1)

Spoiler

Yes, and it allows for conventional optimization
tools to be applied.

ERNSI 2017 Andreas Svensson – andreas.svensson@it.uu.se

Another particle-filter approach to
maximum likelihood estimation



Decision-Theoretic Approach to System Identification
Johan Wågberg, Dave Zachariah, Thomas B. Schön

Department of Information Technology, Uppsala University

I Classical approach: Parametric prediction error methods (PEM).

I Modern approach: Regularized methods for impulse response esimation.

I By viewing identification as a decision we develop a decision-theoretic
framework that bridges the gap.

I Output error model class serves as an illustration.
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Bayesian

{johan.wagberg, dave.zachariah, thomas.schon}@it.uu.se



Model Reduction for Linear Bayesian SysId

G. Prando A. Chiuso

Non-parametric Bayesian SysId estimates high-order FIR models

Model Reduction is needed

for control and filtering applications

We compare:

• 2 reduction algorithms

• several criteria for choosing the order of the reduced model



Grey-box identification for active vibration control 

of a flexible structure with piezo patches
P. WANG (ECL), C. Wang (ECL), A. Korniienko (ECL), G. Scorletti (ECL), X. Bombois (CNRS)，Manuel Collet (ECL)

Non-typical problem:

1. the vibration energy must be particularly rejected in a specific location

2. piezo-transducers cannot be placed at this location

• MIMO feedback controller

• Minimize central energy

• Guaranteed performance

• High quality model: Identification

Benchmark Before grey-box After grey-box



13/15Parametrizing Mechanical Systems using
Matrix Fraction Descriptions


O I 0

Ω2 Dm R
L(ρ1) 0 0

...
...

...
L(ρnρ) 0 0




L[ξ2I + Dmξ + Ω2]−1RP (θ, ξ) = D−1(θ, ξ)N (θ, ξ)Question: "When is

J (θ)

equivalent to ?"

ERNSI 2017



Dynamic Network Reconstruction with Low Sampling 
Frequencies: A Bayesian Approach

Zuogong Yue, Jorge Goncalves
Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg

Failure of Discrete-time Methods Framework

LTI Network Model

y(t) = Q(q)y(t) + P(q)u(t) + H(q)e(t)

(Dynamical Structure Functions)

Causal/dynamic network is inferred by identifying

where Q, P, H are matrices of transfer functions, q is the forward-
shift/differential operator.

Examples of Time series

noise/
disturbance

Time series
{yi(t), uk(t)}

Kalman Filter

DSF
(Q,P,H)
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Jia-Chen Hua1, Farzad Noorian2, Philip H.W. Leong2, Gemunu Gunaratne3, Jorge Gonçalves1

1. Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg
2. School of Electrical and Information Engineering, University of Sydney

3. Department of Physics, University of Houston

Prediction of High-Dimensional Time-Series with Exogenous Variables Using 
Extended Koopman Operator Framework in Reproducing Kernel Hilbert Space

𝒙 1

𝒙 2

𝒙 3

𝒙𝑡
ℝ𝑁 𝒙𝑡+𝜏 = 𝑭(𝒙𝑡)

𝒙 1

𝒙 2

𝒙 3

𝝋(𝒙𝑡)

𝝋(𝒙𝑡+𝜏) =?𝝋(𝒙𝑡)

𝜑1(𝒙)𝜑2(𝒙)

Main ideas:
• High-dimensional time series (with exogenous variables)  dynamical system (with inputs)
• State variables 𝒙𝑡+𝜏 = 𝑭 𝒙𝑡 : high-dimensional extrinsic measurements/outputs of 

underlying lower dimensional true state's dynamics 𝒛𝑡+𝜏 =  𝑭(𝒛𝑡)
• For prediction of outputs 𝒙𝑡+𝜏, learning 𝑭 without identifying  𝑭(𝒛𝑡): not optimal and 

computationally heavy.
• Want some intrinsic feature map {𝜑𝑖 𝒙𝑡 } (doesn’t matter if 𝝋(𝒙𝑡) and 𝒛𝑡 are same for 

prediction purpose) to embed 𝒙𝑡 to intrinsic manifold: learn both geometry and dynamics 
for simultaneous dimension reduction and prediction.

• These {𝜑𝑖 𝒙𝑡 } are eigenfunctions of Koopman operator 𝒦; transform 𝝋(𝒙𝑡+𝜏) back to 
𝒙𝑡+𝜏 using Koopman modes.

Approximating Koopman operator in RKHS
• Choose RKHS as the feature/function space to approximate the linear operator 𝒦

• RKHS  Gaussian Processes Regression: point evaluation 𝑘𝑥∗ ℎ ℋ𝑘
posterior 

mean (statistical interpretation)

• Given 𝒙∗ and training data, ℎ 𝑭 𝒙∗ = 𝒦ℎ 𝒙∗ = 𝑘𝑥∗ 𝒦|ℎ
ℋ𝑘

= 𝔼[ℎ(𝒚)]

• 𝒦 in RKHS  stochastic Koopman operator and Perron-Frobenius operator

𝑭(𝒙∗)𝒙∗

𝒙1

𝒙2

𝒙3

𝒚1

𝒚2
𝒚3

𝒚 ∈ 𝒜

𝒙 ∈ 𝑭−1(𝒜)

𝜌(𝒙)

ℎ(𝒚)

𝑭

𝒦ℎ 𝒙

(ℒ𝜌) 𝒚Probability density evolved by 
Perron-Frobenius operator ℒ

Observable’s mean evolved by 
stochastic Koopman operator

Also includes:
• Algorithm to approximate 𝒦: kernel-based EDMD
• Generalizing Koopman operator to system with inputs
• Numerical examples and prediction performance
• Summary of advantages
• Future outlooks



Gaussian process dynamical model approach to gene regulatory network inference

Atte Aalto and Jorge Gonçalves
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We model fi ’s as Gaussian processes with covariance functions

ki (t, s) = γi exp
(
−
∑n

j=1 βi ,j(tj − sj)
2
)
.

Estimate hyperparameters βi ,j ≥ 0 from the data.

If βi ,j > 0, it means xj regulates xi .



Performance Analysis for Stochastic Wiener System
Identification: A Simple Yet Complicated Example

Bo Wahlberg and Lennart Ljung

I Problem: Identification of a stochastic linear dynamical
system with a non-linear measurement sensors
(Stochastic Wiener System)

I Question: How does the nonlinear characteristic of the sensor
affect the accuracy of the estimated model?

I Answer: It can improve or deteriorate the accuracy compared
to a linear sensor with the same gain!

I How: We will use Gaussian approximations and the
corresponding Fisher Information Matrix for the performance
analysis of a simple yet complicated example.


