Detecting and Quantifying Nonlinearity in a Dynamic Network through the Best Linear Approximation

M. Schoukens, P.M.J. Van den Hof

"small data" system identification

of samples

problem	ill-posed	ill-conditioned	well-cond.
cost fun.		local minima	ightarrow convex
solution	non-unique	sensitive	robust
theoretical results		few results	asymptotic analysis

proposed method:

- 1. $(u, y) \mapsto h$ impulse response estimation using prior knowledge
- 2. $h \mapsto \text{model}$ realization

Computing the D-optimal Zero Order Hold Input for Wiener Models with fixed Power Nonlinearity

Decoupling nonlinear black-box models using tensor methods

Philippe Dreesen Ma

Mariya Ishteva Johan Schoukens

Vrije Universiteit Brussel (VUB)

$$\begin{bmatrix} \mathbf{x}^+ \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} + \begin{bmatrix} \mathbf{f}(\mathbf{x}, \mathbf{u}) \end{bmatrix}$$

 $\begin{bmatrix} \mathbf{x}^+ \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} + \begin{bmatrix} \mathbf{w} \\ -\mathbf{g}_1(\mathbf{x}_1) \\ -\mathbf{g}_2(\mathbf{x}_2) \end{bmatrix}$

Decoupling nonlinear MIMO functions

- model interpretability
- reducing number of parameters

frequency

Two-experiment approach to Wiener system identification

G. Bottegal (TU/e), R. Castro-Garcia (KUL), J.A.K. Suykens (KUL)

TU/e

Estimation of $f(\cdot)$ = regression problem + additional parameter ϕ_{ω}

- Parametric approach for general basis functions
- Least-squares approach for polynomial nonlinearity
- Onparametric approach

Gray-Box Identification using Differenceof-Convex Programming

Work of Chengpu Yu (Bejing Institute of Technology)

Toghether with Prof. Lennart Ljung and Michel Verhaegen September 25, 2017 at the ERNSI meeting in Lyon

 x_{t+1}

Learning Non-linear Dynamics

A. D. Ialongo, M. van der Wilk, C. E. Rasmussen

 x_t

- Distribution over transition functions
- Infer system dimensionality
- Impute missing information

- Fully analytic variational approximation
 - No need for sampling, inference by optimisation

Complementary and extended Kalman filters for orientation estimation

Manon Kok¹ and Thomas B. Schön²

1: Department of Engineering, University of Cambridge, UK Department of Information Technology, Uppsala University, Sweden 2:

We study the relationship between

- complementary filters
- and extended Kalman filters

for orientation estimation using inertial and magnetometer measurements.

Contribution: A complementary filter highlighting similarities and differences between these two filters.

Model selection for change point detection and clustering

Problem: estimate the mean of a signal, assuming it is piece-wise constant and can take only a small number of levels.

In the poster:

- Bayesian selection framework for this problem
- Model selection criteria for the estimator
- Oracle inequality for the estimator
- An adaptive upper bound of the risk
- And more...

Distributed nonparametric identification of acyclic dynamic networks

Riccardo Sven Risuleo and Håkan Hjalmarsson

Can we estimate g using local information only?

Learning an optimization solver for a class of inverse problems

Jonas Adler, Johan Karlsson, Axel Ringh, and Ozan Öktem

• Given family of cost functions $H_b(x) = ||Ax-b||_2^2 + ||\Delta x||_1$ we train an optimization solver to perform as good as possible for fixed number of iterations.

• We extend this by parameterizing a family of algorithms and learn parameters for minimizing a function given a fixed number of iterations.

Method	$H_b(x_{30})$
Sidky et al [7]	9.322
Const. params.	9.253
Free params.	9.234
N = M = 2	9.220
N = M = 3	9.218

Another particle-filter approach to maximum likelihood estimation

$$egin{aligned} x_t \mid x_{t-1} &\sim f_ heta(x_t \mid x_{t-1}) \ y_t \mid x_t &\sim g_ heta(y_t \mid x_t) \end{aligned}$$

Estimation

 $\widehat{\theta} = \arg \max_{\theta} p(y_{1:T} \mid \theta)$

Using particle filters

- \odot Unbiased estimates of $p(y_{1:T}| heta)$
- \odot Stochastic estimates of $p(y_{1:T}| heta)$
- \rightarrow Showstopper for conventional optimization

Question

If we run the particle filter with some θ_{k-1} , can we re-use these particles to also estimate $p(y_{1:T}|\theta')$? (θ' in the neighborhood of θ_{k-1})

Spoiler

Yes, and it allows for conventional optimization tools to be applied.

Decision-Theoretic Approach to System Identification

Johan Wågberg, Dave Zachariah, Thomas B. Schön

Department of Information Technology, Uppsala University

- Classical approach: Parametric prediction error methods (PEM).
- Modern approach: Regularized methods for impulse response esimation.
- By viewing identification as a decision we develop a decision-theoretic framework that bridges the gap.
- Output error model class serves as an illustration.

Non-parametric Bayesian SysId estimates high-order FIR models

Model Reduction is needed

for control and filtering applications

We compare:

- 2 reduction algorithms
- several criteria for choosing the order of the reduced model

Grey-box identification for active vibration control of a flexible structure with piezo patches

P. WANG (ECL), C. Wang (ECL), A. Korniienko (ECL), G. Scorletti (ECL), X. Bombois (CNRS) , Manuel Collet (ECL)

Non-typical problem:

piezo patche

- 1. the vibration energy must be particularly rejected in a specific location
- 2. piezo-transducers cannot be placed at this location

Central energy

Parametrizing Mechanical Systems using Matrix Fraction Descriptions

ERNSI 2017

Question: "When is $P(\theta, \xi) = D^{-1}(\theta, \xi)N(\theta, \xi)$ equivalent to $\mathcal{L}[\xi^2 I + D_m \xi + \Omega^2]^{-1}\mathcal{R}$?"

Dynamic Network Reconstruction with Low Sampling Frequencies: A Bayesian Approach

UNIVERSITÉ DU LUXEMBOURG

Zuogong Yue, Jorge Goncalves

Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg

Examples of Time series

Failure of Discrete-time Methods

LTI Network Model

(Dynamical Structure Functions)

Causal/dynamic network is inferred by identifying

$$y(t) = Q(q)y(t) + P(q)u(t) + H(q)e(t)$$

where Q, P, H are matrices of transfer functions, q is the forward-shift/**differential** operator.

Framework

- Summary of advantages
- Future outlooks

Gaussian process dynamical model approach to gene regulatory network inference

Atte Aalto and Jorge Gonçalves

- We model f_i 's as Gaussian processes with covariance functions $k_i(t,s) = \gamma_i \exp\left(-\sum_{j=1}^n \beta_{i,j}(t_j s_j)^2\right).$
- Estimate hyperparameters $\beta_{i,j} \ge 0$ from the data.
- If $\beta_{i,j} > 0$, it means x_j regulates x_i .

Performance Analysis for Stochastic Wiener System Identification: A Simple Yet Complicated Example **Bo Wahlberg and Lennart Ljung**

- Problem: Identification of a stochastic linear dynamical system with a *non-linear measurement sensors* (Stochastic Wiener System)
- Question: How does the nonlinear characteristic of the sensor affect the accuracy of the estimated model?
- ► **Answer:** It can improve or deteriorate the accuracy compared to a linear sensor with the same gain!
- ► **How:** We will use Gaussian approximations and the corresponding Fisher Information Matrix for the performance analysis of a *simple yet complicated example*.