Direct data-driven control of constrained linear systems

Simone Formentin

Dept. of Electronics, Information and Bioengineering, Politecnico di Milano, Italy

ERNSI Workshop @Lyon, France, September 25, 2017

Joint work with R. Tóth, D. Piga, A. Bemporad and S.M. Savaresi

- Problem formulation
- Direct design of LPV controllers from data
- Constraint management and performance boost
- Concluding remarks

-∢ ∃ ▶

- Problem formulation
- Direct design of LPV controllers from data
- Constraint management and performance boost
- Concluding remarks

-∢ ∃ ▶

Introduction

• Many nonlinear and time-varying plants can be described by LPV models

3

イロト イヨト イヨト イヨト

Introduction

• Many nonlinear and time-varying plants can be described by LPV models

- The dynamic relationship between u(t) and y(t)
 - ✓ is linear
 - \checkmark depends on a **measurable** signal, the so-called scheduling variable p(t)

3

Introduction

• Many nonlinear and time-varying plants can be described by LPV models

- The dynamic relationship between u(t) and y(t)
 - ✓ is linear
 - \checkmark depends on a **measurable** signal, the so-called scheduling variable p(t)
- Linear robust and gain-scheduled control solution can be employed for effective control of complex nonlinear systems!

ERNSI Workshop (Lyon)

September 25, 2017

• Standard approach: system identification + model-based control

3 K K 3 K

• Standard approach: system identification + model-based control

- Identification (global approaches)
 - ✓ State-space (SS) models: (Nemani et al, 1995), (Lee and Poolla, 1997 & 1999) (Lovera et al., 1998), (Sznaier and Mazzaro, 2001 & 2003), (Felici et al., 2007), (van Wingerden and Verhaegen, 2008), (Rizvi et al., 2017)
 - Input/output (IO) models: (Bamieh and Giarré, 1999 & 2002), (Previdi and Lovera, 2003 & 2004), (Toth et al., 2007 & 2008), (Piga et al., 2015)

• Standard approach: system identification + model-based control

- Identification (global approaches)
 - ✓ State-space (SS) models: (Nemani et al, 1995), (Lee and Poolla, 1997 & 1999) (Lovera et al., 1998), (Sznaier and Mazzaro, 2001 & 2003), (Felici et al., 2007), (van Wingerden and Verhaegen, 2008), (Rizvi et al., 2017)
 - Input/output (IO) models: (Bamieh and Giarré, 1999 & 2002), (Previdi and Lovera, 2003 & 2004), (Toth et al., 2007 & 2008), (Piga et al., 2015)
- Model-based control
 - ✓ SS models: many approaches since J. Shamma's thesis in 1988
 - ✓ IO models: some recent studies, e.g., (Ali et al., 2010), (Cerone et al., 2012), (Wollnack et al., 2013), (Abbas et al., 2016 & 2017)

- What to do?
 - ✓ IO identification is often favored as it represents an extension of the classical LTI PEM framework and its capability to handle high order systems

3 K K 3 K

- What to do?
 - ✓ IO identification is often favored as it represents an extension of the classical LTI PEM framework and its capability to handle high order systems
- Problems:
 - ✓ Exact SS realizations of the identified IO models (aimed to SS control) often introduce undesired complexity in the scheduling dependencies, which may prevent controller synthesis or its hardware implementation
 - $\checkmark\,$ IO control design is mainly based on gradient-based BMI solvers and generally suffers from high computational cost
 - ✓ Assessment of performance is often done in continuous-time but discretization of LPV models is still an open problem (Toth et al., 2008)

- What to do?
 - ✓ IO identification is often favored as it represents an extension of the classical LTI PEM framework and its capability to handle high order systems
- Problems:
 - ✓ Exact SS realizations of the identified IO models (aimed to SS control) often introduce undesired complexity in the scheduling dependencies, which may prevent controller synthesis or its hardware implementation
 - $\checkmark\,$ IO control design is mainly based on gradient-based BMI solvers and generally suffers from high computational cost
 - ✓ Assessment of performance is often done in continuous-time but discretization of LPV models is still an open problem (Toth et al., 2008)
 - ✓ The way the modeling errors affect the control performance is unknown for most design methods
 - ✓ Little work has been done on including information about the control objectives into the identification setting

- 4 同 6 4 日 6 4 日 6

- What to do?
 - ✓ IO identification is often favored as it represents an extension of the classical LTI PEM framework and its capability to handle high order systems
- Problems:
 - ✓ Exact SS realizations of the identified IO models (aimed to SS control) often introduce undesired complexity in the scheduling dependencies, which may prevent controller synthesis or its hardware implementation
 - $\checkmark\,$ IO control design is mainly based on gradient-based BMI solvers and generally suffers from high computational cost
 - ✓ Assessment of performance is often done in continuous-time but discretization of LPV models is still an open problem (Toth et al., 2008)
 - ✓ The way the modeling errors affect the control performance is unknown for most design methods
 - ✓ Little work has been done on including information about the control objectives into the identification setting
- Idea: direct identification of the discrete-time controller in its IO representation ("from data to implementation")

- Problem formulation
- Direct design of LPV controllers from data
- Constraint management and performance boost
- Concluding remarks

-∢ ∃ ▶

Direct design of LPV controllers from data

- Many possible ways to address the problem. Here:
 - ✓ Stochastic framework
 - ✓ Model reference control formulation

-∢∃>

Direct design of LPV controllers from data

- Many possible ways to address the problem. Here:
 - ✓ Stochastic framework
 - ✓ Model reference control formulation

$$\begin{array}{lll} \theta_{o} = \arg\min_{\theta,\varepsilon} \|\varepsilon\|^{2} \\ & \text{s.t.} \quad \varepsilon(t) = y_{o}(t) - M(p,t,q^{-1})r(t) \\ A(p,t,q^{-1})y_{o}(t) = B(p,t,q^{-1})u(t) \\ A_{K}(p,t,q^{-1},\theta)u(t) = B_{K}(p,t,q^{-1},\theta)(r(t) - y_{o}(t)) \end{array}$$

Direct design of LPV controllers from data

- Many possible ways to address the problem. Here:
 - ✓ Stochastic framework
 - ✓ Model reference control formulation

$$\begin{array}{rcl} & s.t. & \varepsilon(t) & = & y_o(t) - M(p,t,q^{-1})r(t) \\ & A(p,t,q^{-1})y_o(t) & = & B(p,t,q^{-1})u(t) \\ & A_K(p,t,q^{-1},\theta)u(t) & = & B_K(p,t,q^{-1},\theta)(r(t)-y_o(t)) \end{array}$$

Model-dependent! (unique model-based contribution: Abdullah and Zribi, 2009)

ERNSI Workshop (Lyon)

September 25, 2017

A1. The objective is **achievable**, *i.e.*, $\exists \theta$ such that the closed-loop behavior corresponds to \mathcal{M} for any trajectory of p(t).

3 K K 3 K

- A1. The objective is **achievable**, *i.e.*, $\exists \theta$ such that the closed-loop behavior corresponds to \mathcal{M} for any trajectory of p(t).
- **A2.** \mathcal{G} is stable.

Definition D1. An LPV system \mathcal{G} is **stable** if, for all trajectories $\{u(t), y(t), p(t)\}$ satisfying \mathcal{G} with $u(t) = 0, t \ge 0, \exists \delta > 0$ s.t. $|y(t)| \le \delta, \forall t \ge 0$.

- A1. The objective is **achievable**, *i.e.*, $\exists \theta$ such that the closed-loop behavior corresponds to \mathcal{M} for any trajectory of p(t).
- **A2.** \mathcal{G} is stable.
- A3. \mathcal{M} is left-invertible.

Definition D1. An LPV system \mathcal{G} is **stable** if, for all trajectories $\{u(t), y(t), p(t)\}$ satisfying \mathcal{G} with u(t) = 0, $t \ge 0$, $\exists \ \delta > 0$ s.t. $|y(t)| \le \delta, \forall t \ge 0$.

Definition D2. Given a causal LPV map \mathcal{M} with input r, scheduling signal p and output y, the causal LPV mapping \mathcal{M}^{\dagger} that gives r as output when fed by y, for any trajectory of p, is called the **left inverse** of \mathcal{M} .

• Problem reformulation:

$$\begin{array}{rcl} \theta_{o} = \arg\min_{\theta,\varepsilon} \|\varepsilon\|^{2} & \text{s.t.} \\ \varepsilon(t) & = & y_{o}(t) - M(p,t,q^{-1})r(t) \\ A(p,t,q^{-1})y_{o}(t) & = & B(p,t,q^{-1})u(t) \\ A_{K}(p,t,q^{-1},\theta)u(t) & = & B_{K}(p,t,q^{-1},\theta)(r(t)-y_{o}(t)) \end{array}$$

æ

メロト メポト メヨト メヨト

• Problem reformulation:

$$\begin{array}{rcl} \theta_{o} = \arg\min_{\theta,\varepsilon} \|\varepsilon\|^{2} & \text{s.t.} \\ \varepsilon(t) & = & y_{o}(t) - M(p,t,q^{-1})r(t) \\ A(p,t,q^{-1})y_{o}(t) & = & B(p,t,q^{-1})u(t) \\ A_{K}(p,t,q^{-1},\theta)u(t) & = & B_{K}(p,t,q^{-1},\theta)(r(t) - y_{o}(t)) \end{array}$$

- $r(t) = M^{\dagger}(p, t, q^{-1})\varepsilon(t) + M^{\dagger}(p, t, q^{-1})y_o(t)$, depends on the user defined M^{\dagger} , the unknown ε and the noiseless output

3

E + 4 E +

• Problem reformulation:

$$\begin{aligned} \theta_o &= \arg\min_{\theta,\varepsilon} \|\varepsilon\|^2 \quad \text{s.t.} \\ A(p,t,q^{-1})y_o(t) &= B(p,t,q^{-1})u(t) \\ A_K(p,t,q^{-1},\theta)u(t) &= B_K(p,t,q^{-1},\theta)(M^{\dagger}\varepsilon(t) + M^{\dagger}y_o(t) - y_o(t)) \end{aligned}$$

- $r(t) = M^{\dagger}(p, t, q^{-1})\varepsilon(t) + M^{\dagger}(p, t, q^{-1})y_o(t)$, depends on the user defined M^{\dagger} , the unknown ε and the noiseless output

3

< 3 > < 3 >

Problem reformulation:

$$\theta_o = \arg\min_{\theta,\varepsilon} \|\varepsilon\|^2 \quad \text{s.t.}$$

$$A_{\kappa}(p,t,q^{-1},\theta)u(t) = B_{\kappa}(p,t,q^{-1},\theta)(M^{\dagger}\varepsilon(t)+M^{\dagger}y(t)-y(t))$$

for $t=1,\ldots,N$

- $r(t) = M^{\dagger}(p, t, q^{-1})\varepsilon(t) + M^{\dagger}(p, t, q^{-1})y_o(t)$, depends on the user defined M^{\dagger} , the unknown ε and the noiseless output

- Use of IO data instead of constraint 2

∃ ▶ ∢ ∃ ▶

Problem reformulation:

$$\theta_o = \arg\min_{\theta,\varepsilon} \|\varepsilon\|^2 \quad \text{s.t.}$$

$$A_{\kappa}(p,t,q^{-1},\theta)u(t) = B_{\kappa}(p,t,q^{-1},\theta)(M^{\dagger}\varepsilon(t)+M^{\dagger}y(t)-y(t))$$

for $t=1,\ldots,N$

- $r(t) = M^{\dagger}(p, t, q^{-1})\varepsilon(t) + M^{\dagger}(p, t, q^{-1})y_o(t)$, depends on the user defined M^{\dagger} , the unknown ε and the noiseless output

- Use of IO data instead of constraint 2

• N finite and $y(t) = y_o(t) + w(t)$, with w(t) any zero mean stationary noise

The data-driven optimization problem

• Final control design problem:

$$\begin{array}{ll} \min_{\theta,\varepsilon} \|\varepsilon\|^2 & \text{s.t.} \\ A_{\mathcal{K}}(p,\theta)u(t) &= & B_{\mathcal{K}}(p,\theta)(M^{\dagger}(p)\varepsilon(t) + M^{\dagger}(p)y(t) - y(t)) \\ & \quad \text{for} \quad t = 1, \dots, N \end{array}$$

is an identification problem

$$\underbrace{\begin{array}{c} w \\ y_{o} \\ \downarrow^{+} \end{array}}_{\xi} M^{\dagger} - 1 \underbrace{\xi} K(\theta) \underbrace{u}$$

- $\checkmark \xi$ is the (virtual) noisy input
- \checkmark *u* is the noiseless output
- $\checkmark \varepsilon$ is the residual
- \checkmark $K(\theta)$ is the system to identify

Image: Image:

The data-driven optimization problem

• Final control design problem:

$$\begin{array}{ll} \min_{\substack{\theta,\varepsilon}\\ \theta,\varepsilon} \|\varepsilon\|^2 \quad \mathrm{s.t.} \\ A_{\mathcal{K}}(p,\theta)u(t) &= & B_{\mathcal{K}}(p,\theta)(M^{\dagger}(p)\varepsilon(t)+\xi(t)) \\ & \quad \mathrm{for} \quad t=1,\ldots,N \end{array}$$

is an identification problem

$$\underbrace{\begin{array}{c} w \\ y_{o} \\ \downarrow^{\pm} \end{array}}_{j^{\pm}} \underbrace{y} \\ M^{\dagger} - 1 \underbrace{\xi} \\ K(\theta) \underbrace{u} \\ \downarrow^{\pm} \\ K(\theta) \\ K($$

- $\checkmark \xi$ is the (virtual) noisy input
- \checkmark *u* is the noiseless output
- $\checkmark \varepsilon$ is the residual
- \checkmark $K(\theta)$ is the system to identify

$$\begin{array}{ll} \min_{\theta,\varepsilon} \|\varepsilon\|^2 & \text{s.t.} \\ A_{\mathcal{K}}(p,\theta)u(t) &= & B_{\mathcal{K}}(p,\theta)(M^{\dagger}(p)\varepsilon(t) + M^{\dagger}(p)y(t) - y(t)) \\ & \quad \text{for} \quad t = 1, \dots, N \end{array}$$

-∢ ∃ ▶

$$\begin{array}{ll} \min_{\theta,\varepsilon} \|\varepsilon\|^2 & \text{s.t.} \\ A_{\mathcal{K}}(p,\theta)u(t) &= & B_{\mathcal{K}}(p,\theta)(M^{\dagger}(p)\varepsilon(t) + M^{\dagger}(p)y(t) - y(t)) \\ & \quad \text{for} \quad t = 1, \dots, N \end{array}$$

• Purely data-driven optimization problem with N constraints

$$\begin{array}{ll} \min_{\theta,\varepsilon} \|\varepsilon\|^2 & \text{s.t.} \\ A_{\mathcal{K}}(p,\theta)u(t) &= & B_{\mathcal{K}}(p,\theta)(M^{\dagger}(p)\varepsilon(t) + M^{\dagger}(p)y(t) - y(t)) \\ & \quad \text{for} \quad t = 1, \dots, N \end{array}$$

- Purely data-driven optimization problem with N constraints
- Critical points:
 - \checkmark the original and the current problems are equivalent when y(t) is noisy?

$$\begin{array}{ll} \min_{\substack{\theta,\varepsilon\\\theta,\varepsilon}} \|\varepsilon\|^2 \quad \text{s.t.} \\ A_{\mathcal{K}}(p,\theta)u(t) &= & B_{\mathcal{K}}(p,\theta)(M^{\dagger}(p)\varepsilon(t) + M^{\dagger}(p)y(t) - y(t)) \\ & \quad \text{for} \quad t = 1, \dots, N \end{array}$$

- Purely data-driven optimization problem with N constraints
- Critical points:
 - \checkmark the original and the current problems are equivalent when y(t) is noisy?
 - ✓ problem complexity depends on the controller parameterization

$$\begin{array}{ll} \min_{\substack{\theta,\varepsilon\\\theta,\varepsilon}} \|\varepsilon\|^2 \quad \text{s.t.} \\ A_{\mathcal{K}}(p,\theta)u(t) &= & B_{\mathcal{K}}(p,\theta)(M^{\dagger}(p)\varepsilon(t) + M^{\dagger}(p)y(t) - y(t)) \\ & \quad \text{for} \quad t = 1, \dots, N \end{array}$$

- Purely data-driven optimization problem with N constraints
- Critical points:
 - \checkmark the original and the current problems are equivalent when y(t) is noisy?
 - ✓ problem complexity depends on the controller parameterization
 - \checkmark computation of $M^{\dagger}(p)$ from \mathcal{M} defined as

$$\begin{array}{rcl} x_M(t+1) &=& A_M(p,t) x_M(t) + B_M(p,t) r(t) \\ y(t) &=& C_M(p,t) x_M(t) + D_M(p,t) r(t) \end{array}$$

Computation of $M^{\dagger}(p)$

• Analytical solution:

Proposition

Assume that $D_M(p,t) \neq 0, \forall p$ such that $\exists D_M^{-1}(p,t)$ with $D_M^{-1}(p,t)D_M(p,t) = 1, \forall p$. Define the state-space representation of M^{\dagger} as

$$\begin{array}{rcl} \mathsf{x}_{M^{\dagger}}(t+1) &=& \mathsf{A}_{M^{\dagger}}(p,t)\mathsf{x}_{M^{\dagger}}(t) + \mathsf{B}_{M^{\dagger}}(p,t)\mathsf{y}(t) \\ \mathsf{r}(t) &=& \mathsf{C}_{M^{\dagger}}(p,t)\mathsf{x}_{M^{\dagger}}(t) + \mathsf{D}_{M^{\dagger}}(p,t)\mathsf{y}(t) \end{array}$$

The matrices describing M^{\dagger} can be computed as

• In real applications, we encounter two different scenarios

✓ CASE A: Fixed-structure controller tuning (namely, parameter optimization, e.g. gain-scheduled PID tuning with affine parameterization)

✓ CASE B: LPV controller design (both structure selection and parameter optimization are needed, e.g. gain-scheduled PID tuning with unknown parameterization)

Two different scenarios - cont'd

• Controller parameterization:

$$\begin{aligned} A_{K}(p,t,q^{-1},\theta)u(t) &= B_{K}(p,t,q^{-1},\theta)(r(t)-y(t)) \\ A_{K}(p,t,q^{-1}) &= 1 + \sum_{i=1}^{n_{a_{K}}} a_{i}^{K}(p,t)q^{-i} \\ B_{K}(p,t,q^{-1}) &= \sum_{i=0}^{n_{b_{K}}} b_{i}^{K}(p,t)q^{-i} \\ a_{i}^{K}(p,t) &= \sum_{j=1}^{n_{0}} a_{i,j}^{K}f_{i,j}(p,t) \\ b_{i}^{K}(p,t) &= \sum_{j=0}^{m_{i}} b_{i,j}^{K}g_{i,j}(p,t) \end{aligned}$$

æ

イロト イヨト イヨト イヨト

Two different scenarios - cont'd

• Controller parameterization:

$$A_{K}(p, t, q^{-1}, \theta)u(t) = B_{K}(p, t, q^{-1}, \theta)(r(t) - y(t))$$

$$A_{K}(p, t, q^{-1}) = 1 + \sum_{i=1}^{n_{a_{K}}} a_{i}^{K}(p, t)q^{-i}$$

$$B_{K}(p, t, q^{-1}) = \sum_{i=0}^{n_{b_{K}}} b_{i}^{K}(p, t)q^{-i}$$

$$a_{i}^{K}(p, t) = \sum_{j=1}^{n_{0}} a_{i,j}^{K}f_{i,j}(p, t)$$

$$b_{i}^{K}(p, t) = \sum_{j=0}^{m_{i}} b_{i,j}^{K}g_{i,j}(p, t)$$

• CASE A: $f_{i,j}(p, t)$ and $g_{i,j}(p, t)$ are **a-priori** defined nonlinear (possibly dynamic) functions of p.

ERNSI Workshop (Lyon)
Fixed-structure controller tuning

• CASE A:

$$\theta = [\underline{a}_{1}^{\top} \dots \underline{a}_{n_{a_{K}}}^{\top} \underline{b}_{0}^{\top} \dots \underline{b}_{n_{b_{K}}}^{\top}]^{\top}$$
$$\underline{a}_{i} = [a_{i,1}^{K} \dots a_{i,n_{i}}^{K}]^{\top}, \ \underline{b}_{i} = [b_{i,1}^{K} \dots b_{i,m_{i}}^{K}]^{\top}$$

3

Fixed-structure controller tuning

• CASE A:

$$\theta = [\underline{a}_{1}^{\top} \dots \underline{a}_{n_{a_{K}}}^{\top} \underline{b}_{0}^{\top} \dots \underline{b}_{n_{b_{K}}}^{\top}]^{\top}$$

$$\underline{a}_{i} = [a_{i,1}^{K} \dots a_{i,n_{i}}^{K}]^{\top}, \ \underline{b}_{i} = [b_{i,1}^{K} \dots b_{i,m_{i}}^{K}]^{\top}$$

• The problem of interest

$$\begin{array}{ll} \min_{\theta,\varepsilon} \|\varepsilon\|^2 & \mathrm{s.t.} \\ A_{\mathcal{K}}(p,\theta)u(t) & = & B_{\mathcal{K}}(p,\theta)(M^{\dagger}(p)\varepsilon(t) + M^{\dagger}(p)y(t) - y(t)), \forall t \end{array}$$

 \checkmark is **convex** if $B_{\mathcal{K}}(q^{-1}, p, \theta)$ is independent of θ

- ∢ ∃ ▶

• CASE A:

$$\theta = [\underline{a}_{1}^{\top} \dots \underline{a}_{n_{a_{K}}}^{\top} \underline{b}_{0}^{\top} \dots \underline{b}_{n_{b_{K}}}^{\top}]^{\top}$$

$$\underline{a}_{i} = [\underline{a}_{i,1}^{K} \dots \underline{a}_{i,n_{i}}^{K}]^{\top}, \ \underline{b}_{i} = [\underline{b}_{i,1}^{K} \dots \underline{b}_{i,m_{i}}^{K}]^{\top}$$

• The problem of interest

$$\begin{split} & \min_{\theta,\varepsilon} \|\varepsilon\|^2 \quad \text{s.t.} \\ & A_{\mathcal{K}}(p,\theta) u(t) \quad = \quad B_{\mathcal{K}}(p,\theta) (M^{\dagger}(p)\varepsilon(t) + M^{\dagger}(p)y(t) - y(t)), \forall t \end{split}$$

✓ is **convex** if $B_{\mathcal{K}}(q^{-1}, p, \theta)$ is independent of θ ✓ is **bi-convex** if $B_{\mathcal{K}}(q^{-1}, p, \theta)$ is linear in θ

• Controller dynamics:

$$A_{\mathcal{K}}(p,\theta)u(t) = B_{\mathcal{K}}(p,\theta)\xi(t) + B_{\mathcal{K}}(p,\theta)M^{\dagger}(p)\varepsilon(t)$$

∃ ▶ ∢ ∃ ▶

• Controller dynamics:

$$A_{\mathcal{K}}(p,\theta)u(t) = B_{\mathcal{K}}(p,\theta)\xi(t) + B_{\mathcal{K}}(p,\theta)M^{\dagger}(p)\varepsilon(t)$$

• Define:

$$\phi(\xi,t) = [-u(t-1)f_{1,0}(p,t),\ldots,\xi(t)g_{0,0}(p,t),\xi(t-n_{\mathrm{b}_{K}})g_{n_{\mathrm{b}_{K}},1}(p,t),\ldots]^{\top}$$

E + 4 E +

• Controller dynamics:

$$A_{\mathcal{K}}(p, heta)u(t) = B_{\mathcal{K}}(p, heta)\xi(t) + B_{\mathcal{K}}(p, heta)M^{\dagger}(p)\varepsilon(t)$$

• Define:

$$\phi(\xi,t) = [-u(t-1)f_{1,0}(p,t),\ldots,\xi(t)g_{0,0}(p,t),\xi(t-n_{\mathrm{b}_{K}})g_{n_{\mathrm{b}_{K}},1}(p,t),\ldots]^{\top}$$

• "Regression-like" form:

$$u(t) = \phi^{\top}(\xi, t)\theta + B_{\mathcal{K}}(p, t, \theta)M^{\dagger}(p, t)\varepsilon(t)$$

▶ < ∃ ▶

• Controller dynamics:

$$A_{K}(p,\theta)u(t) = B_{K}(p,\theta)\xi(t) + B_{K}(p,\theta)M^{\dagger}(p)\varepsilon(t)$$

Define:

 $\phi(\xi,t) = [-u(t-1)f_{1,0}(\rho,t),\ldots,\xi(t)g_{0,0}(\rho,t),\xi(t-n_{\mathrm{b}_{K}})g_{n_{\mathrm{b}_{K}},1}(\rho,t),\ldots]^{\top}$

• "Regression-like" form:

$$u(t) = \phi^{\top}(\xi, t)\theta + B_{\mathcal{K}}(\rho, t, \theta)M^{\dagger}(\rho, t)\varepsilon(t)$$

• θ -dependent residual (and noisy input) \rightarrow instrumental variables

通 ト イヨ ト イヨ ト

• Controller dynamics:

$$A_{K}(p, heta)u(t) = B_{K}(p, heta)\xi(t) + B_{K}(p, heta)M^{\dagger}(p)\varepsilon(t)$$

• Define:

 $\phi(\xi,t) = [-u(t-1)f_{1,0}(\rho,t),\ldots,\xi(t)g_{0,0}(\rho,t),\xi(t-n_{\mathrm{b}_{K}})g_{n_{\mathrm{b}_{K}},1}(\rho,t),\ldots]^{\top}$

• "Regression-like" form:

$$u(t) = \phi^{\top}(\xi, t)\theta + B_{\mathcal{K}}(p, t, \theta)M^{\dagger}(p, t)\varepsilon(t)$$

• θ -dependent residual (and noisy input) \rightarrow instrumental variables • "Least squares"-like solution $\hat{\theta}_{IV}$

• LPV system
$$\mathcal{G}$$
 (with $\mathbb{P} = [-0.4, 0.4]$)
 $x_G(t+1) = p(t)x_G(t) + u(t)$
 $y(t) = x_G(t)$

æ

イロト イヨト イヨト イヨト

• LPV system
$$\mathcal{G}$$
 (with $\mathbb{P} = [-0.4, 0.4]$)
 $x_G(t+1) = p(t)x_G(t) + u(t)$
 $y(t) = x_G(t)$

• Reference LPV behaviour ${\cal M}$

$$\begin{array}{rcl} x_{M}(t+1) &=& A_{M}(p,t) x_{M}(t) + B_{M}(p,t) r(t) \\ & y_{M}(t) &=& C_{M}(p,t) x_{M}(t) + D_{M}(p,t) r(t) \\ A_{M}(p,t) &= \left[\begin{array}{c} -1 & 1 \\ -1 - \Delta p(t) & 1 \end{array} \right], \ B_{M}(p,t) = \left[\begin{array}{c} 1 + p(t) \\ 1 + \Delta p(t) \end{array} \right], \\ C_{M} &= \left[1 & 0 \right], \ D_{M} = 0, \Delta p(t) = p(t) - p(t-1) \end{array}$$

3

E + 4 E +

• LPV system
$$\mathcal{G}$$
 (with $\mathbb{P} = [-0.4, 0.4]$)
 $x_G(t+1) = p(t)x_G(t) + u(t)$
 $y(t) = x_G(t)$

• Reference LPV behaviour ${\cal M}$

$$\begin{array}{rcl} x_{M}(t+1) &=& A_{M}(p,t)x_{M}(t)+B_{M}(p,t)r(t)\\ y_{M}(t) &=& C_{M}(p,t)x_{M}(t)+D_{M}(p,t)r(t)\\ \\ A_{M}(p,t) &= \left[\begin{array}{cc} -1 & 1\\ -1-\Delta p(t) & 1 \end{array} \right], \ B_{M}(p,t) &= \left[\begin{array}{cc} 1+p(t)\\ 1+\Delta p(t) \end{array} \right],\\ \\ C_{M} &= \left[1 & 0 \right], \ D_{M} &= 0, \Delta p(t) = p(t)-p(t-1) \end{array}$$

• Gain-scheduled PI controller ${\cal K}$

$$\begin{array}{rcl} x_{\mathcal{K}}(t+1) &=& x_{\mathcal{K}}(t) + (\theta_0(p,t) + \theta_1(p,t)) \left(r(t) - y(t) \right) \\ u(t) &=& x_{\mathcal{K}}(t) + \theta_0(p,t) \left(r(t) - y(t) \right) \end{array}$$

 $\theta_0(p,t) = \theta_{00} + \theta_{01}p(t), \ \theta_1(p,t) = \theta_{10} + \theta_{11}p(t-1)$

• LPV system
$$\mathcal{G}$$
 (with $\mathbb{P} = [-0.4, 0.4]$)
 $x_G(t+1) = p(t)x_G(t) + u(t)$
 $y(t) = x_G(t)$

• Reference LPV behaviour \mathcal{M} (achievable!)

$$\begin{array}{rcl} x_{M}(t+1) &=& A_{M}(p,t)x_{M}(t)+B_{M}(p,t)r(t)\\ y_{M}(t) &=& C_{M}(p,t)x_{M}(t)+D_{M}(p,t)r(t)\\ \\ A_{M}(p,t) &= \left[\begin{array}{cc} -1 & 1\\ -1-\Delta p(t) & 1 \end{array} \right], \ B_{M}(p,t) &= \left[\begin{array}{cc} 1+p(t)\\ 1+\Delta p(t) \end{array} \right],\\ \\ C_{M} &= \left[1 & 0 \right], \ D_{M} &= 0, \Delta p(t) = p(t)-p(t-1) \end{array}$$

• Gain-scheduled PI controller ${\cal K}$

$$\begin{array}{rcl} x_{\mathcal{K}}(t+1) &=& x_{\mathcal{K}}(t) + (\theta_0(p,t) + \theta_1(p,t)) \left(r(t) - y(t) \right) \\ u(t) &=& x_{\mathcal{K}}(t) + \theta_0(p,t) \left(r(t) - y(t) \right) \end{array}$$

 $\theta_0(p,t) = \theta_{00} + \theta_{01} p(t), \ \theta_1(p,t) = \theta_{10} + \theta_{11} p(t-1)$

Illustrative example - cont'd

Mean tracking error: less than 1%

 $\begin{array}{rcl} \theta_0^{\circ}(p,t) = 1 + p(t) & \rightarrow & \hat{\theta}_0(p,t) = 0.9852 + 1.0166 p(t) \\ \theta_1^{\circ}(p,t) = -p(t-1) & \rightarrow & \hat{\theta}_1(p,t) = -0.0153 - 0.9860 p(t-1) \end{array}$

Price to pay: two experiments plus a least squares estimation

< <>></>

-∢ ∃ ▶

Two different scenarios - cont'd

• Controller parameterization:

$$\begin{aligned} A_{K}(p,t,q^{-1},\theta)u(t) &= B_{K}(p,t,q^{-1},\theta)(r(t)-y(t)) \\ A_{K}(p,t,q^{-1}) &= 1 + \sum_{i=1}^{n_{a_{K}}} a_{i}^{K}(p,t)q^{-i} \\ B_{K}(p,t,q^{-1}) &= \sum_{i=0}^{n_{b_{K}}} b_{i}^{K}(p,t)q^{-i} \\ a_{i}^{K}(p,t) &= \sum_{j=1}^{n_{0}} a_{i,j}^{K}f_{i,j}(p,t) \\ b_{i}^{K}(p,t) &= \sum_{j=0}^{m_{i}} b_{i,j}^{K}g_{i,j}(p,t) \end{aligned}$$

3

イロト イヨト イヨト イヨト

Two different scenarios - cont'd

• Controller parameterization:

$$\begin{aligned} A_{K}(p,t,q^{-1},\theta)u(t) &= B_{K}(p,t,q^{-1},\theta)(r(t)-y(t)) \\ A_{K}(p,t,q^{-1}) &= 1 + \sum_{i=1}^{n_{a_{K}}} a_{i}^{K}(p,t)q^{-i} \\ B_{K}(p,t,q^{-1}) &= \sum_{i=0}^{n_{b_{K}}} b_{i}^{K}(p,t)q^{-i} \\ a_{i}^{K}(p,t) &= \sum_{j=1}^{n_{0}} a_{i,j}^{K}f_{i,j}(p,t) \\ b_{i}^{K}(p,t) &= \sum_{j=0}^{m_{i}} b_{i,j}^{K}g_{i,j}(p,t) \end{aligned}$$

• CASE B: $f_{i,j}(p, t)$ and $g_{i,j}(p, t)$ are **unknown** nonlinear (possibly dynamic) functions of p.

ERNSI Workshop (Lyon)

Nonparametric tuning

• CASE B:

$$\begin{aligned} \mathbf{a}_{i}^{K}(\mathbf{p},t) &= \theta_{i}^{\top}\psi_{i}(\mathbf{p},t) \quad i = 1, \dots, n_{\mathrm{a}_{K}} \\ b_{i}^{K}(\mathbf{p},t) &= \theta_{i+n_{\mathrm{a}_{K}}+1}^{\top}\psi_{i+n_{\mathrm{a}_{K}}+1}(\mathbf{p},t) \quad i = 0, \dots, n_{\mathrm{b}_{K}} \end{aligned}$$

• $\theta_i \in \mathbb{R}^{n_{\mathrm{H}}}$ is a vector of unknown parameters and $\psi_i(p, t)$ (with $i = 1, \ldots, n_{\mathrm{a}_{\mathrm{K}}} + n_{\mathrm{b}_{\mathrm{K}}} + 1$) is a nonlinear map from \mathbb{P} to an n_{H} -dimensional space, commonly referred to as the **feature space**

3 K K 3 K

• CASE B:

$$\begin{aligned} \mathbf{a}_{i}^{K}(\mathbf{p},t) &= \theta_{i}^{\top}\psi_{i}(\mathbf{p},t) \quad i = 1, \dots, n_{\mathrm{a}_{K}} \\ b_{i}^{K}(\mathbf{p},t) &= \theta_{i+n_{\mathrm{a}_{K}}+1}^{\top}\psi_{i+n_{\mathrm{a}_{K}}+1}(\mathbf{p},t) \quad i = 0, \dots, n_{\mathrm{b}_{K}} \end{aligned}$$

- $\theta_i \in \mathbb{R}^{n_{\mathrm{H}}}$ is a vector of unknown parameters and $\psi_i(p, t)$ (with $i = 1, \ldots, n_{\mathrm{a}_{\mathrm{K}}} + n_{\mathrm{b}_{\mathrm{K}}} + 1$) is a nonlinear map from \mathbb{P} to an n_{H} -dimensional space, commonly referred to as the **feature space**
- Neither ψ_i nor n_H are specified. Potentially, θ_i and ψ_i(p, t) can be infinite-dimensional vectors!

• Controller dynamics:

$$A_{\mathcal{K}}(p,\theta)u(t) = B_{\mathcal{K}}(p,\theta)\xi(t) + B_{\mathcal{K}}(p,\theta)M^{\dagger}(p)\varepsilon(t)$$

3

A B F A B F

Image: Image:

• Controller dynamics:

$$A_{\mathcal{K}}(\boldsymbol{p}, \theta) u(t) = B_{\mathcal{K}}(\boldsymbol{p}, \theta) \xi(t) + B_{\mathcal{K}}(\boldsymbol{p}, \theta) M^{\dagger}(\boldsymbol{p}) \varepsilon(t)$$

$$x(\xi,t) = [-u(t-1) \dots - u(t-n_{a_{\kappa}}) \xi(t) \dots \xi(t-n_{b_{\kappa}})]^{\perp}.$$

3

A B M A B M

Image: Image:

• Controller dynamics:

$$A_{\mathcal{K}}(\boldsymbol{p},\theta)u(t) = B_{\mathcal{K}}(\boldsymbol{p},\theta)\xi(t) + B_{\mathcal{K}}(\boldsymbol{p},\theta)M^{\dagger}(\boldsymbol{p})\varepsilon(t)$$

Define

$$x(\xi,t) = [-u(t-1) \dots - u(t-n_{a_{\kappa}}) \xi(t) \dots \xi(t-n_{b_{\kappa}})]^{\perp}.$$

• "Regression-like" form:

$$u(t) = \sum_{i=1}^{n_{\rm f}} \theta_i^\top \psi_i(p,t) x_i(\xi,t) + \underbrace{B_{\mathcal{K}}(p,\theta,\psi_i) M^{\dagger}(p) \varepsilon(t)}_{\varepsilon_u(t)}$$

3

イロト イヨト イヨト イヨト

Controller dynamics:

$$A_{\mathcal{K}}(\boldsymbol{p},\theta)u(t) = B_{\mathcal{K}}(\boldsymbol{p},\theta)\xi(t) + B_{\mathcal{K}}(\boldsymbol{p},\theta)M^{\dagger}(\boldsymbol{p})\varepsilon(t)$$

$$x(\xi,t) = [-u(t-1) \dots - u(t-n_{a_{\kappa}}) \xi(t) \dots \xi(t-n_{b_{\kappa}})]^{\perp}.$$

• "Regression-like" form:

$$u(t) = \sum_{i=1}^{n_{\rm f}} \theta_i^\top \psi_i(p,t) x_i(\xi,t) + \underbrace{B_{\mathcal{K}}(p,\theta,\psi_i) M^{\dagger}(p) \varepsilon(t)}_{\varepsilon_u(t)}$$

• θ - and ψ_i -dependent residual (and noisy input) \rightarrow instrumental variables

A B < A B <</p>

• Different problem formulation ("primal" form - still convex):

$$\begin{split} \min_{\theta_i,\varepsilon_u} \ \frac{1}{2} \sum_{i=1}^{n_f} \theta_i^\top \theta_i \ + \ \frac{\gamma}{2N^2} \sum_{i=1}^{n_f} \left\| \sum_{t=1}^N z_i(t) \varepsilon_u(t) \right\|_2^2 \\ \text{s.t.} \ \varepsilon_u(t) = u(t) - \sum_{i=1}^{n_f} \theta_i^\top \psi_i(p,t) x_i(\xi,t), \quad \forall t \in \mathcal{I}_1^N \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Different problem formulation ("primal" form - still convex):

$$\begin{split} \min_{\theta_i,\varepsilon_u} \ \frac{1}{2} \sum_{i=1}^{n_f} \theta_i^\top \theta_i \ + \ \frac{\gamma}{2N^2} \sum_{i=1}^{n_f} \left\| \sum_{t=1}^N z_i(t) \varepsilon_u(t) \right\|_2^2 \\ \text{s.t.} \ \varepsilon_u(t) = u(t) - \sum_{i=1}^{n_f} \theta_i^\top \psi_i(\rho, t) x_i(\xi, t), \quad \forall t \in \mathcal{I}_1^N \end{split}$$

• Identification as a regularized optimization problem

通 ト イヨ ト イヨト

• Different problem formulation ("primal" form - still convex):

$$\begin{split} & \min_{\theta_i,\varepsilon_u} \ \frac{1}{2} \sum_{i=1}^{n_f} \theta_i^\top \theta_i \ + \ \frac{\gamma}{2N^2} \sum_{i=1}^{n_f} \left\| \sum_{t=1}^N z_i(t) \varepsilon_u(t) \right\|_2^2 \\ & \text{s.t.} \ \varepsilon_u(t) = u(t) - \sum_{i=1}^{n_f} \theta_i^\top \psi_i(\rho, t) x_i(\xi, t), \quad \forall t \in \mathcal{I}_1^N \end{split}$$

- Identification as a regularized optimization problem
- $z_i(t) \in \mathbb{R}^{n_{\mathrm{H}}}$: instrument

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Different problem formulation ("primal" form - still convex):

$$\begin{split} & \min_{\theta_i,\varepsilon_u} \; \frac{1}{2} \sum_{i=1}^{n_f} \theta_i^\top \theta_i \; + \; \frac{\gamma}{2N^2} \sum_{i=1}^{n_f} \left\| \sum_{t=1}^N z_i(t) \varepsilon_u(t) \right\|_2^2 \\ & \text{s.t.} \; \varepsilon_u(t) = u(t) - \sum_{i=1}^{n_f} \theta_i^\top \psi_i(p,t) x_i(\xi,t), \quad \forall t \in \mathcal{I}_1^N \end{split}$$

- Identification as a regularized optimization problem
- $z_i(t) \in \mathbb{R}^{n_{\mathrm{H}}}$: instrument

Proposition

$$\lim_{N \to \infty} \hat{\theta}_{\text{NP,IV}} = \theta^{\circ} - R^{-1} \gamma^{-1} \theta^{\circ},$$

$$R = \lim_{N \to \infty} \gamma^{-1} I + \frac{1}{N^2} \Psi^{\top} Z Z^{\top} \Psi$$

- ∢ ∃ ▶

• Problem: $\hat{\theta}_{\text{NP,IV}}$ cannot be computed since an explicit representation of $\psi_i(p, t)$ and $z_i(t)$ would be needed

< f²
 ▶

- Problem: $\hat{\theta}_{\text{NP,IV}}$ cannot be computed since an explicit representation of $\psi_i(p, t)$ and $z_i(t)$ would be needed
- Dual problem:

$$\begin{split} \mathcal{L}(\alpha,\theta,E) = &\frac{1}{2} \sum_{i=1}^{n_{\mathrm{f}}} \theta_i^\top \theta_i + \frac{\gamma}{2N^2} \sum_{i=1}^{n_{\mathrm{f}}} \left\| \Psi_i^\top X_i(\hat{\xi}) E \right\|_2^2 + \\ &- \alpha^\top \left(E - U + \sum_{i=1}^{n_{\mathrm{f}}} X_i(\xi) \Psi_i \theta_i \right), \end{split}$$

where $\boldsymbol{\alpha} \in \mathbb{R}^{\textit{N}}$ are Lagrangian multipliers

ヨト くまり

- Problem: θ̂_{NP,IV} cannot be computed since an explicit representation of ψ_i(p, t) and z_i(t) would be needed
- Dual problem:

$$\begin{split} \mathcal{L}(\alpha,\theta,E) = &\frac{1}{2} \sum_{i=1}^{n_{\mathrm{f}}} \theta_i^\top \theta_i + \frac{\gamma}{2N^2} \sum_{i=1}^{n_{\mathrm{f}}} \left\| \Psi_i^\top X_i(\hat{\xi}) E \right\|_2^2 + \\ &- \alpha^\top \left(E - U + \sum_{i=1}^{n_{\mathrm{f}}} X_i(\xi) \Psi_i \theta_i \right), \end{split}$$

where $\alpha \in \mathbb{R}^N$ are Lagrangian multipliers

• From Karush-Kuhn-Tucker (KKT) conditions for all $i = 1, ..., n_f$:

$$\alpha = R_{\mathrm{D}}^{-1}(\Psi_i) \frac{1}{N^2} \sum_{i=1}^{n_{\mathrm{f}}} X_i(\hat{\xi}) \Psi_i \Psi_i^\top X_i(\hat{\xi}) U,$$

$$R_{\mathrm{D}}(\Psi_i) = \gamma^{-1}I + \frac{1}{N^2}\sum_{i=1}^{n_{\mathrm{f}}} X_i(\hat{\xi})\Psi_i\Psi_i^\top X_i(\hat{\xi})\sum_{j=1}^{n_{\mathrm{f}}} X_j(\xi)\Psi_j\Psi_j^\top X_j(\xi).$$

프 에 에 프 어

- Define the *Grammian* matrix as $\Omega_i = \Psi_i \Psi_i^{\top}$.
- According to the Mercer's theorem, the generic (t, k)-th entry of Ω_i can be described by a positive definite kernel function κ_i(p, t, k), i.e.,

$$\left[\Omega_{i}\right]_{t,k} = \left\langle \psi_{i}(\boldsymbol{p},t), \psi_{i}(\boldsymbol{p},k) \right\rangle = \kappa_{i}(\boldsymbol{p},t,k).$$

- Define the *Grammian* matrix as $\Omega_i = \Psi_i \Psi_i^{\top}$.
- According to the Mercer's theorem, the generic (t, k)-th entry of Ω_i can be described by a positive definite kernel function κ_i(p, t, k), i.e.,

$$[\Omega_i]_{t,k} = \langle \psi_i(\boldsymbol{p}, t), \psi_i(\boldsymbol{p}, k) \rangle = \kappa_i(\boldsymbol{p}, t, k).$$

• Specification of the kernels instead of the maps ψ_i is called the kernel trick (Vapnik, 1998)

3 K K 3 K

- Define the *Grammian* matrix as $\Omega_i = \Psi_i \Psi_i^{\top}$.
- According to the Mercer's theorem, the generic (t, k)-th entry of Ω_i can be described by a positive definite kernel function κ_i(p, t, k), i.e.,

$$[\Omega_i]_{t,k} = \langle \psi_i(\boldsymbol{p},t), \psi_i(\boldsymbol{p},k) \rangle = \kappa_i(\boldsymbol{p},t,k).$$

- Specification of the kernels instead of the maps ψ_i is called the **kernel trick** (Vapnik, 1998)
- In our case:

$$\alpha = R_{\mathrm{D}}^{-1}(\Omega_i) \frac{1}{N^2} \sum_{i=1}^{n_{\mathrm{f}}} X_i(\hat{\xi}) \Psi_i \Psi_i^\top X_i(\hat{\xi}) U$$

with

$$R_{\mathrm{D}}(\Omega_i) = \gamma^{-1}I + \frac{1}{N^2}\sum_{i=1}^{n_{\mathrm{f}}} X_i(\hat{\xi}) \Psi_i \Psi_i^\top X_i(\hat{\xi}) \sum_{j=1}^{n_{\mathrm{f}}} X_j(\xi) \Psi_i \Psi_i^\top X_j(\xi).$$

- Define the *Grammian* matrix as $\Omega_i = \Psi_i \Psi_i^{\top}$.
- According to the Mercer's theorem, the generic (t, k)-th entry of Ω_i can be described by a positive definite kernel function κ_i(p, t, k), i.e.,

$$[\Omega_i]_{t,k} = \langle \psi_i(\boldsymbol{p},t), \psi_i(\boldsymbol{p},k) \rangle = \kappa_i(\boldsymbol{p},t,k).$$

- Specification of the kernels instead of the maps ψ_i is called the **kernel trick** (Vapnik, 1998)
- In our case:

$$\alpha = R_{\mathrm{D}}^{-1}(\Omega_i) \frac{1}{N^2} \sum_{i=1}^{n_{\mathrm{f}}} X_i(\hat{\xi}) \Omega_i X_i(\hat{\xi}) U$$

with

$$R_{\mathrm{D}}(\Omega_i) = \gamma^{-1}I + \frac{1}{N^2}\sum_{i=1}^{n_{\mathrm{f}}} X_i(\hat{\xi}) \underline{\Omega}_i X_i(\hat{\xi}) \sum_{j=1}^{n_{\mathrm{f}}} X_j(\xi) \underline{\Omega}_i X_j(\xi).$$

• A typical choice of kernel is the Radial Basis Function (RBF) kernel:

$$\kappa_i(\boldsymbol{p},t,k) = \exp\left(-\frac{\|\boldsymbol{p}(t)-\boldsymbol{p}(k)\|_2^2}{\sigma_i^2}\right),$$

• A typical choice of kernel is the Radial Basis Function (RBF) kernel:

$$\kappa_i(\boldsymbol{p},t,k) = \exp\left(-\frac{\|\boldsymbol{p}(t)-\boldsymbol{p}(k)\|_2^2}{\sigma_i^2}\right),$$

 σ_i > 0 is a hyper-parameter characterizing the width of the RBF and it is tuned by the user (e.g., through cross-validation).

• • = • • = •

• A typical choice of kernel is the Radial Basis Function (RBF) kernel:

$$\kappa_i(\boldsymbol{p}, t, k) = \exp\left(-\frac{\|\boldsymbol{p}(t) - \boldsymbol{p}(k)\|_2^2}{\sigma_i^2}\right)$$

- σ_i > 0 is a hyper-parameter characterizing the width of the RBF and it is tuned by the user (e.g., through cross-validation).
- Once the Lagrangian multipliers α are computed, the *p*-dependent coefficient functions $a_i^{\kappa}(p, t)$ and $b_i^{\kappa}(p, t)$ characterizing the LPV controller are obtained as

$$\begin{aligned} \mathbf{a}_{i}^{K}(\boldsymbol{\cdot}) &= \psi_{i}^{\top}(\boldsymbol{\cdot})\theta_{i} = \psi_{i}^{\top}(\boldsymbol{\cdot})\Psi_{i}^{\top}X_{i}(\xi)\alpha = \sum_{t=1}^{N}\underbrace{\psi_{i}^{\top}(\boldsymbol{\cdot})\psi_{i}(\boldsymbol{p},t)}_{\kappa_{i}(\boldsymbol{p},t,\boldsymbol{\cdot})}x_{i}(\xi,t)\alpha_{t}, \\ b_{i}^{K}(\boldsymbol{\cdot}) &= \psi_{i+n_{\mathrm{a}_{K}}+1}^{\top}(\boldsymbol{\cdot})\theta_{i+n_{\mathrm{a}_{K}}+1} = \psi_{i+n_{\mathrm{a}_{K}}+1}^{\top}(\boldsymbol{\cdot})\Psi_{i+n_{\mathrm{a}_{K}}+1}^{\top}X_{i+n_{\mathrm{a}_{K}}+1}(\xi)\alpha = \\ &= \sum_{t=1}^{N}\underbrace{\psi_{i+n_{\mathrm{a}_{K}}+1}^{\top}(\boldsymbol{\cdot})\psi_{i+n_{\mathrm{a}_{K}}+1}(\boldsymbol{p},t)}_{\kappa_{i+n_{\mathrm{a}_{K}}+1}(\xi,t)\alpha_{t}} x_{i+n_{\mathrm{a}_{K}}+1}(\xi,t)\alpha_{t}. \end{aligned}$$

Illustrative example Reprise

• LPV system
$$\mathcal{G}$$
 (with $\mathbb{P} = [-0.4, 0.4]$)
 $x_G(t+1) = p(t)x_G(t) + u(t)$
 $y(t) = x_G(t)$

 $\bullet\,$ Reference achievable LPV behaviour ${\cal M}$

$$egin{aligned} & x_{\mathcal{M}}(t+1) &=& A_{\mathcal{M}}(p,t) x_{\mathcal{M}}(t) + B_{\mathcal{M}}(p,t) r(t) \ & y_{\mathcal{M}}(t) &=& C_{\mathcal{M}}(p,t) x_{\mathcal{M}}(t) + D_{\mathcal{M}}(p,t) r(t) \ & A_{\mathcal{M}}(p,t) &= \left[egin{aligned} & -1 & 1 \ & -1 - \Delta p(t) & 1 \end{array}
ight], \ & B_{\mathcal{M}}(p,t) &= \left[egin{aligned} & 1 + p(t) \ & 1 + \Delta p(t) \end{array}
ight], \ & C_{\mathcal{M}} &= \left[1 & 0
ight], \ & D_{\mathcal{M}} &= 0, \Delta p(t) &= p(t) - p(t-1) \end{aligned}$$

- ∢ ∃ ▶
Illustrative example Reprise

• LPV system
$$\mathcal{G}$$
 (with $\mathbb{P} = [-0.4, 0.4]$)
 $x_G(t+1) = p(t)x_G(t) + u(t)$
 $y(t) = x_G(t)$

• Reference achievable LPV behaviour ${\cal M}$

$$egin{aligned} & x_M(t+1) &= & A_M(p,t) x_M(t) + B_M(p,t) r(t) \ & y_M(t) &= & C_M(p,t) x_M(t) + D_M(p,t) r(t) \ & A_M(p,t) = egin{bmatrix} & -1 & 1 \ & -1 - \Delta p(t) & 1 \ \end{bmatrix}, \ B_M(p,t) = egin{bmatrix} & 1 + p(t) \ & 1 + \Delta p(t) \ \end{bmatrix}, \ & C_M = egin{bmatrix} & 1 & 0 \end{bmatrix}, \ D_M = 0, \Delta p(t) = p(t) - p(t-1) \end{aligned}$$

• Nonparametric controller \mathcal{K}

$$\begin{split} u(t) &= a_1^K(p(t), p(t-1))u(t-1) + \\ &+ b_0^K(p(t), p(t-1))(r(t) - y(t)) + \\ &+ b_1^K(p(t), p(t-1))(r(t-1) - y(t-1)) \end{split}$$

- Same IO data as before
- Now the dependence of a^K₁, b^K₀ and b^K₁ on p(t) and p(t − 1) is not a-priori specified (neither the integral action is fixed)

-∢∃>

- Same IO data as before
- Now the dependence of a₁^K, b₀^K and b₁^K on p(t) and p(t 1) is not a-priori specified (neither the integral action is fixed)
- γ and σ_i (i = 1, 2, 3) are chosen through cross-validation

- Same IO data as before
- Now the dependence of a₁^K, b₀^K and b₁^K on p(t) and p(t 1) is not a-priori specified (neither the integral action is fixed)
- γ and σ_i (i = 1, 2, 3) are chosen through cross-validation

- Same IO data as before
- Now the dependence of a₁^K, b₀^K and b₁^K on p(t) and p(t 1) is not a-priori specified (neither the integral action is fixed)
- γ and σ_i (i = 1, 2, 3) are chosen through cross-validation

A case study

- In a real-world application,
 - ✓ Assumption A1 may not be verified (*M* is usually given as a barely achievable LTI model)
 - \checkmark The system dynamics is much more complex

-∢ ∃ ▶

A case study

- In a real-world application,
 - ✓ Assumption A1 may not be verified (*M* is usually given as a barely achievable LTI model)
 - ✓ The system dynamics is much more complex
- A more realistic case study :

Voltage-controlled DC motor with an unbalanced disk

• Continuous-time system dynamics

$$\begin{bmatrix} \dot{\theta}(\tau) \\ \dot{\omega}(\tau) \\ \dot{I}(\tau) \end{bmatrix} = \left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{b}{J} & \frac{K}{J} \\ 0 & -\frac{K}{L} & -\frac{R}{L} \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ \frac{mgl}{J} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \frac{\sin(\theta(\tau))}{\theta(\tau)} \right) \begin{bmatrix} \theta(\tau) \\ I(\tau) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L} \end{bmatrix} V(\tau)$$
$$y(\tau) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta(\tau) \\ \omega(\tau) \\ I(\tau) \end{bmatrix},$$

æ

E + 4 E +

• Continuous-time system dynamics

$$\begin{bmatrix} \dot{\theta}(\tau) \\ \dot{\omega}(\tau) \\ \dot{I}(\tau) \end{bmatrix} = \left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{b}{J} & \frac{K}{J} \\ 0 & -\frac{K}{L} & -\frac{R}{L} \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ \frac{mgl}{J} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \frac{\sin(\theta(\tau))}{\theta(\tau)} \right) \begin{bmatrix} \theta(\tau) \\ u(\tau) \\ I(\tau) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L} \end{bmatrix} V(\tau)$$
$$y(\tau) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta(\tau) \\ \omega(\tau) \\ I(\tau) \end{bmatrix},$$

 $\bullet\,$ Third order system with dynamics depending on the load angular position $\theta\,$

프 에 에 프 어

• Continuous-time system dynamics

$$\begin{bmatrix} \dot{\theta}(\tau) \\ \dot{\omega}(\tau) \\ \dot{I}(\tau) \end{bmatrix} = \left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{b}{J} & \frac{K}{J} \\ 0 & -\frac{K}{L} & -\frac{R}{L} \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ \frac{mgl}{J} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \frac{\sin(\theta(\tau))}{\theta(\tau)} \right) \begin{bmatrix} \theta(\tau) \\ u(\tau) \\ I(\tau) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L} \end{bmatrix} V(\tau)$$
$$y(\tau) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta(\tau) \\ \omega(\tau) \\ I(\tau) \end{bmatrix},$$

- Third order system with dynamics depending on the load angular position heta
- Model is unknown: $p(\tau) = \theta(\tau)$ and functional dependency to be learnt

3 K K 3 K

• Continuous-time system dynamics

$$\begin{bmatrix} \dot{\theta}(\tau) \\ \dot{\omega}(\tau) \\ \dot{I}(\tau) \end{bmatrix} = \left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{b}{J} & \frac{K}{J} \\ 0 & -\frac{K}{L} & -\frac{R}{L} \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ \frac{mgl}{J} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \frac{\sin(\theta(\tau))}{\theta(\tau)} \right) \begin{bmatrix} \theta(\tau) \\ u(\tau) \\ I(\tau) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L} \end{bmatrix} V(\tau)$$
$$y(\tau) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta(\tau) \\ \omega(\tau) \\ I(\tau) \end{bmatrix},$$

- $\bullet\,$ Third order system with dynamics depending on the load angular position $\theta\,$
- Model is unknown: $p(\tau) = \theta(\tau)$ and functional dependency to be learnt
- The system is quasi LPV (more realistic setting)

注入 《注入

• Data-driven controller tuning:

 \checkmark 1st order LTI reference model (\approx 0.15 Hz dynamics)

$$x_{\mathcal{M}}(t+1) = 0.99 x_{\mathcal{M}}(t) + 0.01 r(t)$$
$$\theta_{\mathcal{M}}(t) = x_{\mathcal{M}}(t)$$

 \checkmark 4th order nonparametric controller with integral action

$$\begin{split} u(t) &= \sum_{i=1}^{4} a_i^K(\Pi(t)) u(t-i) + \sum_{j=0}^{4} b_j^K(\Pi(t)) e_{int}(t-j) \\ e_{int}(t) &= e_{int}(t-1) + (r(t) - y(t)) , \\ \Pi(t) &= \left[p(t-1) \ p(t-2) \ p(t-3) \ p(t-4) \right]^\top , \end{split}$$

- ∢ ∃ ▶

• γ and σ_i , $\forall i$ are chosen through cross-validation

æ

A B M A B M

• γ and σ_i , $\forall i$ are chosen through cross-validation

Closed-loop matching satisfactory almost everywhere (...but is the reference model acceptable?)

ERNSI Workshop (Lyon)

Image: A matrix

32 / 40

æ

∃ ► < ∃ ►</p>

- Problem formulation
- Direct design of LPV controllers from data
- Constraint management and performance boost
- Concluding remarks

- ₹ 🗦 🕨

3

The model \mathcal{M} describes the relation between r and y!

3

3

ERNSI Workshop (Lyon)

35 / 40

3

₹ Ξ > < Ξ >

- 一司

3

- ∢ ∃ ▶

DC motor: obtained results

Average time required to compute the control law: 11 ms (MPC toolbox, Matlab)

ERNSI Workshop (Lyon)

September 25, 2017

э

DC motor: obtained results

3

DC motor: obtained results

æ

A B F A B F

Image: A matrix

- Problem formulation
- Direct design of LPV controllers from data
- Constraint management and performance boost
- Concluding remarks

- ₹ 🗦 🕨

• An LPV controller K_p is designed from data (without using a model of the plant) to achieve a desired closed loop behaviour \mathcal{M} a-priori specified by the user.

- An LPV controller K_p is designed from data (without using a model of the plant) to achieve a desired closed loop behaviour \mathcal{M} a-priori specified by the user.
- The desired closed-loop behavior should not be too demanding, otherwise it may not be achieved.

- An LPV controller K_p is designed from data (without using a model of the plant) to achieve a desired closed loop behaviour \mathcal{M} a-priori specified by the user.
- The desired closed-loop behavior should not be too demanding, otherwise it may not be achieved.
- The known model \mathcal{M} is used to design an outer MPC controller, which allows one to handle input/output constraints and to improve the closed-loop performance.

- An LPV controller K_p is designed from data (without using a model of the plant) to achieve a desired closed loop behaviour \mathcal{M} a-priori specified by the user.
- The desired closed-loop behavior should not be too demanding, otherwise it may not be achieved.
- The known model \mathcal{M} is used to design an outer MPC controller, which allows one to handle input/output constraints and to improve the closed-loop performance.
- Use explicit MPC to reduce the online computational time.

- An LPV controller K_p is designed from data (without using a model of the plant) to achieve a desired closed loop behaviour \mathcal{M} a-priori specified by the user.
- The desired closed-loop behavior should not be too demanding, otherwise it may not be achieved.
- The known model \mathcal{M} is used to design an outer MPC controller, which allows one to handle input/output constraints and to improve the closed-loop performance.
- Use explicit MPC to reduce the online computational time.
- Design robust MPC able to handle uncertainties due to a possible mismatch between the desired inner closed loop behaviour \mathcal{M} and the actual one.
- An LPV controller K_p is designed from data (without using a model of the plant) to achieve a desired closed loop behaviour \mathcal{M} a-priori specified by the user.
- The desired closed-loop behavior should not be too demanding, otherwise it may not be achieved.
- The known model \mathcal{M} is used to design an outer MPC controller, which allows one to handle input/output constraints and to improve the closed-loop performance.
- Use explicit MPC to reduce the online computational time.
- Design robust MPC able to handle uncertainties due to a possible mismatch between the desired inner closed loop behaviour \mathcal{M} and the actual one.
- Real-world applications?