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Introduction

Data-generating LPV system (innovation noise)

xk+1 = A(pk)xk + B(pk)uk + K (pk)ek ,

yk = C (pk)xk + D(pk)uk + ek ,

(jointly minimal State-Space (SS) representation)

M(·) =

[
A(·) B(·) K (·)
C (·) D(·) I

]
: P→ R(nx+ny)×(nx+nu+ny) smooth matrix function

Input Output State Scheduling
u : N→ U ⊆ Rnu y : N→ Y ⊆ Rny x : N→ X ⊆ Rnx p : N→ P ⊆ Rnp

P compact set; e ind. white noise with ek ∼ N (0,Σe).
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Introduction

The LPV predictor form

xk+1 = Ã(pk)xk + B̃(pk)uk + K (pk)yk ,

yk = C (pk)xk + D(pk)uk + ek ,

(Required to be asymptotically stable)

ek = yk − (C (pk)xk + D(pk)uk)︸ ︷︷ ︸
E{yk |M,xk ,pk ,uk}

(prediction error)

Predictor state matrix Predictor input matrix
Ã(pk) = A(pk)− K (pk)C (pk) B̃(pk) = B(pk)− K (pk)D(pk)

Measurements: DN = {uk , yk , pk}Nk=1
3/39
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Introduction

Identification setting

For a given choice of M̂ and x̂0, let the prediction error be εk w.r.t DN .

minM̂,x̂0 VN := 1
N

∑N−1
k=0 ‖εk‖22

K(pk) +^yk q -1

A(pk)
^

B(pk)
^ C(pk)

^

D(pk)
^ +

uk

+

~

~

xk^

εk

-I
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Introduction

Available methods

Assuming that M is an affine function ⇒ many methods:

• PEM-SS (gradient based) [Cox et. al. 2017, Verdult et al. 2002]

• Expectation maximization (EM) [Wills and Ninnes 2011]

• Ho-Kalman realization based [Cox et al. 2016]

• PBSID and its variants e.g., [van Wingerden and Verhaegen 2009]

• Early attempts for subspace schemes e.g., [Verdult and Verhaegen 2002]

• Kalman filter based [dos Santos et al. 2008]

• Set membership (SM) e.g., [Sznaier et al. 2000]

Only a few attempts for non-parametric estimation of M under measured {xk}Nk=1.
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Introduction

Problems

• serious curse of dimensionality (research on LPV subspace schemes)

• parametrization of dependency (huge assumptions/simplifications)

• choice of the innovation structure (limited noise scenario)

Main question
How to mitigate the curse of dimensionality (reach efficiency of the LTI case) and eliminate
the need for parametrization (functional estimate of M) in LPV-SS identification?

Consider a feedback-free scenario and let’s think out of the box!
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Introduction

Kernelized Canonical Correlation Analysis

Forward and backward prediction of the state

State estimation via KCCA

Nonparametric estimation of M

Tuning of Hyper-parameters

Numerical examples

Conclusion and outlook
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Correlation Analysis



Kernelized Canonical Correlation Analysis

Canonical Correlation Analysis (CCA)
(originally studied by Hotelling 1936)

Given two random vectors u ∈ Rn and y ∈ Rn with

Σ = E

{[
u

y

] [
u> y>

]}
=

[
Σuu Σuy

Σyu Σyy

]

Find vectors vi and wi such that all correlation moments

ρi =
cov{v>i u,w>i y}√

var{v>i u}
√

var{w>i y}
=

v>i Σuywi√
v>i Σuuvi

√
w>i Σyywi

are maximized. For normalization (canonical) impose that v>i Σuuvi = 1 and w>i Σyywi = 1.
Define also Π = diag(ρ1, . . . ρn) and zu = V>u, zy = W>y as canonical correlates.

Why? We want to find a latent variable x = Π−1/2V>u such that ŷ = WΠ1/2x

(core idea of state realization / estimation) 8/39
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Kernelized Canonical Correlation Analysis

By the Lagrangian method, the solutions correspond to the GEP problem:[
0 Σuy

Σyu 0

][
vi
wi

]
= ρi

[
Σuu 0
0 Σyy

][
vi
wi

]
giving that i ∈ {1, . . . nx} with 0 < nx ≤ n.

Solved via sample based approximation of Σ and SVD.

Stochastic interpretation, e.g., [Bach and Jordan 2006]:

u

y

x

Optimal conditional entropy realization:
x ∼ N (0, Inx)

u | x ∼ N (Ṽ Inx ,Ψu) Ṽ = VΠ1/2;

y | x ∼ N (W̃ Inx ,Ψy) W̃ = WΠ1/2;

Estimation of (Ṽ , W̃ ,Ψu,Ψy) via sampled Σ is an ML solution
under Gaussian noise.
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Kernelized Canonical Correlation Analysis

Kernelized Canonical Correlation Analysis (KCCA)

What happens if we have a nonlinear relationship?

Let F be a function space and consider the correlates

zu = fv(u)

zy = fw(y)

}
⇒

target

x = f̃v(u)

x = f̃w(y)

Objective: maximize the F-correlation:

ρF = max
fv,fw∈F

corr(fv(u), fw(y)) = max
fv,fw∈F

cov(fv(u), fw(y))

(var fv(u))1/2(var fw(y))1/2
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Kernelized Canonical Correlation Analysis

Let F be an RKHS on Rn and let K : Rn ×Rn → R be the associated symmetric, (continuous)
positive definite kernel and 〈·, ·〉 the corresponding inner product (induced norm).

φz = K(·, z) is a so called feature map satisfying
f (z) = 〈φz , f 〉, ∀f ∈ F , ∀z ∈ Rn

⇓

corr(f1(z1), f2(z2)) = corr(〈φz1 , f1〉, 〈φz2 , f2〉)

which projects the previous F-correlation w.r.t. the feature space.

For observations z1,1, . . . z1,N and z2,1, . . . , z2,N centered in feature space,
i.e.,

∑N
k=1 φz1,k = 0 and

∑N
k=1 φz2,k = 0:

f1 =
N∑

k=1

α1,kφz1,k + f ⊥1 , f2 =
N∑

k=1

α2,kφz2,k + f ⊥2

corresponding to projection on subspaces.
11/39
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Kernelized Canonical Correlation Analysis

Sampled F correlation:

ρ̂F = max
fv,fw∈F

corr(fv(u), fw(y) | {uk}Nk=1, {yk}Nk=1)

= max
αv,αw∈RN

α>v Kuyαw

(α>v Kuuαv)1/2(α>wKyyαw)1/2

where [Ku]i,j = K(ui , uj) and Kuy = KuKy .

By the Lagrangian method, the solutions correspond to the GEP problem:[
0 Kuy

Kyu 0

][
αv

αw

]
= ρ̂F

[
Kuu 0
0 Kyy

][
αv

αw

]

Resulting correlates: zu = f̂v(u) =
∑N

k=1 αv,kK(uk , u) and zy = f̂w(y) =
∑N

k=1 αw,kK(yk , y)

Note that the Gram matrices can be centered in case of non-centered data. All correlation
moments are obtained as all solutions of the GEP.
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Kernelized Canonical Correlation Analysis

Need for regularization:

Kuu and Kyy are centered, hence under general kernel functions and data they can be singular.

Regularized F-correlation (κ > 0):

ρκF = max
fv,fw∈F

corr(fv(u), fw(y)) = max
fv,fw∈F

cov(fv(u), fw(y))

(var fv(u) + κ‖f1‖2F )1/2(var fw(y) + κ‖f2‖2F )1/2

which gives the GEP:[
0 Kuy

Kyu 0

]
︸ ︷︷ ︸

Kκ

[
αv

αw

]
= λ

[
(Ku + Nκ

2 I )2 0
0 (Ky + Nκ

2 I )2

]
︸ ︷︷ ︸

Dκ

[
αv

αw

]

Consistent estimator of the regularized F-correlation [Bach and Jordan 2003].

Effect of regularization: λ→ λ
λ+ Nκ

2
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Kernelized Canonical Correlation Analysis

Choice of kernel

Gaussian kernel:

K(u, y) = exp
(
−‖u − y‖22

2σ2

)
where σ > 0 is a hyper-parameter of the kernel width.

Polynomial kernel:

K(u, y) = (x>y + c)l

where c ∈ R and l ∈ N are hyper-parameters.

Hermite polynomial kernels, etc.
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Kernelized Canonical Correlation Analysis

How to chose hyper-parameters θ associated with the kernel K?

Limited literature, mainly based on various forms of Cross Validation (CV).

Minimization of the conditional entropy of u and y given zu and zy [Bach and Jordan 2003]?

Mutual information between the projected variables zu and zy in case of jointly Gaussian
variables via the CCA:

I = −1
2

nx∑
i=1

log(1− ρ2
i )

Approximation for KCCA in terms of the contrast function (generalized variance):

ÎF =
det(Kκ)

detDκ

Then compute derivative w.r.t. hyper-parameters and minimize it.
15/39
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Forward and backward
prediction of the state



Forward and backward prediction of the state

Notation to characterize past and future:

p̄dk := [ p>k−d · · · p>k−1 ]> ∈ Rdnp past data

p̄dk+d := [ p>k · · · p>k+d−1 ]> ∈ Rdnp future data

ūdk ∈ Rdnu , ȳd
k ∈ Rdny , ūdk+d ∈ Rdnu , and ȳd

k+d ∈ Rdny are defined in a similar way.

we also define z̄dk =
[
ūd
k

ȳd
k

]
, z̄dk+d =

[
ūd
k+d

ȳd
k+d

]
∈ Rd(nu+ny).

16/39



Forward and backward prediction of the state

 yk
yk+1

...
yk+d−1

=


C(pk )

C(pk+1)Ã(pk )

...

C(pk+d−1)

d∏
l=2

Ã(pk+d−l )


︸ ︷︷ ︸

(Od
f �p)(k)

xk+



D(pk ) 0 ··· 0

C(pk+1)B̃(pk ) D(pk+1) ···
...

...
...

. . .
...

C(pk+d−1)

d−1∏
l=2

Ã(pk+d−l )B̃(pk ) C(pk+d−1)

d−2∏
l=2

Ã(pk+d−l )B̃(pk+1) ··· D(pk+d−1)


︸ ︷︷ ︸

(Hd
f �p)(k)

 uk
uk+1

...
uk+d−1



+



0 0 ··· 0

C(pk+1)K(pk ) 0 ···
...

...
...

. . .
...

C(pk+d−1)

d−1∏
l=2

Ã(pk+d−l )K(pk ) C(pk+d−1)

d−2∏
l=2

Ã(pk+d−l )K(pk+1) ··· 0


︸ ︷︷ ︸

(Ld
f �p)(k)

 yk
yk+1

...
yk+d−1

+

 ek
ek+1

...
ek+d−1

 .
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Forward and backward prediction of the state

Forward data equation

ȳd
k+d = (Od

f � p)(k) · xk + (Hd
f � p)(k) · ūdk+d + (Ld

f � p)(k) · ȳd
k+d + ēdk+d ,

• (Od
f � p)(k) ∈ Rdny×n is the time-varying d-step forward observability matrix

• (Hd
f � p)(k) ∈ Rdny×dnu is a matrix with Infinite Impulse Response (IIR) coefficients

• (Ld
f � p)(k) ∈ Rdny×dny is a lower triangular matrix

• Assumption: structural observability in the deterministic sense

Definition (Structural observability)
The LPV-SS representation with state-dimension nx is called structurally observable, if there
exists a scheduling trajectory p ∈ PZ, such that the nx-step observability matrix (Onx

f � p)(k)

is full (column) rank for all k ∈ Z.

This gives a necessary PE condition on DN . 18/39



Forward and backward prediction of the state

Forward state transfer:
(based on the forward output equation)

xk =
(
Od

f (k)
)† ((

I − Ld
f (k)

)
ȳd
k+d −Hd

f (k)ūdk+d

)
−
(
Od

f (k)
)†
ēdk+d ,

Backward state transfer:
(based on the state equation)

xk =
(∏d

i=1 Ã(pk−i )
)

︸ ︷︷ ︸
X d

p (k)

xk−d +Rd
p(k)ūdk + Vd

p (k)ȳd
k ,

Using a similar definition of a d-step backward reachability matrix Rd
p(k) depending on

pk−d , ..., pk−1 and its counterpart Vd
p (k) with respect to K (pk).

Assumption: structural state controllability.
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Forward and backward prediction of the state

Main data equation
(relation of future and past IO data)

ȳd
k+d = Od

f (k)Rd
p(k)ūdk +Hd

f (k)ūdk+d +Od
f (k)Vd

p (k)ȳd
k

+ (Ld
f � p)(k) · ȳd

k+d +Od
f (k)X d

p (k)xk−d + ēdk+d

where d is chosen such that X d
p (k) ≈ 0 due to the asymptotic stability of the predictor form.

Central equation in LPV subspace identification.

Recent unified subspace theory under affine dependence [Cox 2017].
CCA-affine case ⇒ ML estimator. Parametrization ⇒ curse of dimensionality.

How to estimate the state without parameterization of the dependency?
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State estimation via KCCA

Application of KCCA

e is an independent and identically distributed (i.i.d) zero-mean process,
the expected value of the last term in the forward equation is zero:

x̂k =
(
Od

f (k)
)† [−Hd

f (k) I − Ld
f (k)

]
︸ ︷︷ ︸

ϕf (p̄d
k+d )

z̄dk+d forward predictor

x̂k =
[
Rd

p(k) Vd
p (k)

]
︸ ︷︷ ︸

ϕp(p̄d
k )

z̄dk , backward predictor

KCCA will change the state basis to maximize correlation of the predictors under a chosen F .

Note that ff(p̄dk+d , z̄
d
k+d) = ϕf(p̄

d
k+d)z̄dk+d and fp(p̄dk , z̄

d
k ) = ϕp(p̄dk )z̄dk correspond to F .
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State estimation via KCCA

Define the past and future data sets Φp,Φf ∈ RN×nx as

Φp :=
[
ϕp(p̄d1 )z̄d1 · · · ϕp(p̄dN)z̄dN

]>
,

Φf :=
[
ϕf(p̄

d
1+d)z̄d1+d · · · ϕf(p̄

d
N+d)z̄dN+d

]>
,

where ϕp : Rdnp → Rnx×d(nu+ny) and ϕf : Rdnp → Rnx×d(nu+ny) represent unknown feature
maps with unknown nx.

Let’s use the previous KCCA theory with

RKHS Generating kernel Kernel core Regularization

F K(s1, s2) = z̄>1 Kc(p̄1, p̄2)z̄2 Kc : Rdnp × Rdnp → R κ > 0

(Here, s = [ z̄> p̄> ]>)
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State estimation via KCCA

Estimates:

Potentially 2N solutions computed via the SVD of a 2N × 2N matrix.
(no curse of dimensionality)

State estimates using the forward correlates:

x̆ jk = η>j

 z̄d >1+d k̆(p̄d1+d , p̄
d
k+d)

...
z̄d >N+d k̆(pdN+d , p̄

d
k+d)

 z̄dk+d .

State dimension is selected via:
(a) magnitude of resulting singular values (b) AIC [Larimore 2005].

Properties?

23/39



State estimation via KCCA

State is estimated as x̆k ≈ (T � p)(k) · xk where T : Rdnp → Rn̂x×nx is a state transformation

Equivalent realization:

x̆k+1 = (Ãe � p)(k)x̆k + (B̃e � p)(k)uk + (Ke � p)(k)yk ,

yk = (Ce � p)(k)x̆k + (De � p)(k)uk + ek ,

where TÃ = ÃeT , TB̃ = B̃e, TK = Ke, C = CeT , and D = De

Potential price to be paid
Free choice of state basis can easily lead to the state of an equivalent LPV-SS representation
with dynamic dependence.
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Nonparametric estimation of M

The concept:

Given the extended data set D̆ = {uk , yk , x̆k , pk}Nk=1, estimation of the matrix functions in

x̆k+1 = (Ãe � p)(k)x̆k + (B̃e � p)(k)uk + (Ke � p)(k)yk ,+ξk

yk = (Ce � p)(k)x̆k + D(pk)uk + ϕk ,

M̃(·) =

[
Ãe(·) B̃e(·) Ke(·)
Ce(·) D(·) I

]
: Pd → R(nx+ny)×(nx+nu+ny)

Corresponds to a non-parametric regression problem.

RKHS solutions: Empirical Bayesian via GP or LS-SVM
(dependency can be restricted to static to reduce model complexity)
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Tuning of Hyper-parameters

Let θ be the collection of hyper-parameters:

• θc for KCCA state estimation: κ and kernel coefficients

• θs for estimation of M̃ by GP/LS-SVM: regularization parameters and kernel coefficients
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Tuning of Hyper-parameters

Method 1: Cross validation via

BFR(θ) = 100% ·max
(
1−
‖yk − ŷk(θ)‖2
‖yk − ȳ‖2

, 0
)

where ŷk is the predicted or simulated response of the estimated model.
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Tuning of Hyper-parameters

Method 2: Marginalized likelihood (only for level 2)

log p̄(Y |X̆ ,U,P, θs) = −1
2

( ny∑
i=1

YiΞ
−1
i Y>i + log|Ξi |

)
− 1

2

(
nx∑
i=1

X̆iΩ
−1
i X̆>i + log|Ωi |

)
− N

2
log 2π,

where the sub-kernel matrices Ξi and Ωi are defined as Ξi = Ξ + ψ−1
i IN , Ωi = Ω + γ−1

i IN .
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Numerical examples

Example 1: Academic example

xk+1 = A(pk)xk + B(pk)uk + K (pk)ek ,

yk = C (pk)xk + ek .

A(pk) =


sat(pk) 1 0 0

1
2

p3
k

8
4
10

1
5

3
10 0 p2

k

5
1
8

0 0 1
2

1
5

 , B(pk) =
[
p4
k

5 0 1
5 0

]>
,

K (pk) =


tanh(pk )

3pk
0

0 0
0 sin(2πpk) + cos(2πpk)

0 1

 , C (pk) =

[
p2
k

5 1 0 0
0 0 1 0

]
,

sat(pk) is a saturation function with limits at ±0.5 and unity slope; P = [−1,+1]
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Numerical examples

Data generation:

• x0 = [0 0 0 0]> (initial condition)

• uk ∼ U(−1, 1) and pk = sin(0.3k)

• ek ∼ N (0, Iσ2
e ), σ2

e chosen to guarantee a 20dB signal-to-noise ratio (SNR)

• DN = {uk , yk , pk}Nk=1 with N = 1100

• The data is divided into 800 and 300 samples for estimation Dest
800 and validation Dval

300

Identification via KCCA based LS-SVM for LPV-SS:

• future & past window size of d = 4

• Polynomial kernel (order 4) in KCCA

• RBF kernels in estimation of M (uniform choice of σ)

• CV tuning of hyper parameters θ
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Numerical examples

Figure 1: Singular values in the SVD based KCCA with poly-kernel.
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Numerical examples

Figure 2: Validation results: simulated response computed on Dval
300 (red) and the noise free response

of the original system (blue), i.e., noise free y associated with Dval
300. 32/39



Numerical examples

Table 1: Monte-Carlo simulation results for Example 1.

n̂ Mean (BFR %) Std. (BFR %)
SNR 25dB 4 85.15 1.12

8 87.03 0.751
SNR 20dB 4 83.91 0.911

8 86.31 0.022
9 86.03 1.015

Sate order estimation
Inaccuracy of kernel selection and sub-optimality of hyper-parameter choice leads to increased state
order of the estimate (well-known phenomenon in realization theory).
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Numerical examples

Example 2: CSTR simulation example

Figure 3: An ideal continuous stirred tank reactor.
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Numerical examples

First principles based dynamics:

Ṫ2 =
Q1

V
(T1 − T2)− UHE

AHE
(T2 − Tc) +

∆Hk0

ρcρ
e−

EA
RT2 C2,

Ċ2 =
Q1

V
(C1 − C2)− k0e

− EA
RT2 C2,

Input Output Scheduling

u =
[
Q1 Tc

]>
y = T2 p = C1
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Numerical examples

Data generation:

• u = PRBS with ± 10% of the nominal values
• OE scenario: Gaussian white noise is added such that 25dB SNR is maintained for the

output T2

Figure 4: Scheduling trajectory C1(kg/m3) for Example 2.

Identification via KCCA based LS-SVM for LPV-SS:

• future & past window size of d = 4
• Polynomial kernel (order 4) in KCCA
• RBF kernels in estimation of M (uniform choice of σ)
• CV tuning of hyper parameters θ 36/39
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Numerical examples

Figure 5: Example 2: Validation results for CSTR output temperature T2(oC) using LS-SVM-based
identification with (gray) and without (red) full states measurements.
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Numerical examples

Table 2: CSTR output fitness simulation results.

SNR (dB) BFR (%)
LS-SVM (full states measurement) 25 86.72

KCCA-based LS-SVM 25 83.23
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Conclusion and outlook

Summary

• Applied KCCA to avoid curse of dimensionality in LPV subspace identification.

• Proof of concept via simulation studies.

• Work in progress. Suggestions are welcome.

Outlook

• Implement automatic kernel tuning and explore kernel selection for state transfer maps

• Investigate stochastic realization in the LPV case (NL dependence, closed-loop case, etc.)

• KCCA-SVM as a non-parametric estimate of the system to seed parametric PEM-SS

39/39


	Kernelized Canonical Correlation Analysis
	Forward and backward prediction of the state
	State estimation via KCCA
	Nonparametric estimation of M
	Tuning of Hyper-parameters
	Numerical examples
	Conclusion and outlook

