Local LTI Model Coherence for LPV Interpolation

Qinghua Zhang, Lennart Ljung

ERNSI Workshop 2017
LPV systems identification

Local approach vs global approach

- Pros......
- Cons......
Local approach vs global approach

- Pros……
- Cons……

But no time for those comments 😊

Let’s focus on the local approach…
Local approach to LPV system identification

\[x_{k+1} = A(p)x_k + B(p)u_k + w_k \]
\[y_k = C(p)x_k + D(p)u_k + v_k \]

\(p \)-dependent local LTI model

Locally estimated state-space models

Scheduling \(p \)

\(ABCD(p_1) \)
\(ABCD(p_2) \)
\(ABCD(p_3) \)
\(ABCD(p_4) \)
Local approach to LPV system identification

Only state-space models are considered in this presentation.

\[
\begin{align*}
 x_{k+1} &= A(p)x_k + B(p)u_k + w_k \\
 y_k &= C(p)x_k + D(p)u_k + v_k
\end{align*}
\]
Local LTI model interpolation

The model parameters $ABCD(p_i)$ are estimated from I/O data up to an arbitrary similarity transformation T_i.

The local models must be made “coherent” before interpolation.
It is widely acknowledged that state-space models must be made “coherent” before their interpolation. But there is no consensus on how.
Local LTI model interpolation

It is widely acknowledged that state-space models must be made “coherent” before their interpolation. But there is no consensus on how. More troublesomely, what does mean a “coherent” set of local models?
This presentation is about the “coherence” of local LTI models for the purpose of their interpolation.

Model interpolation ≠ Output interpolation
Local LTI model interpolation

This presentation is about the "coherence" of local LTI models for the purpose of their interpolation.

An interesting, but controversial topic......
“Coherent” local models for interpolation

Local models are **usually** transformed into some particular (canonical) form before their interpolation:

- **The controllable canonical form**
 [Steinbuch et al., 2003]
- **The balanced form**
 [Lovera and Mercere, 2007]
- **The modal form**
 [Yung, 2002]
- **A zero-pole decomposition-based form**
 [De Caigny et al., 2009, 2011]
- **An observability matrix-based form**
 [De Caigny et al., 2014]
“Coherent” local models for interpolation

In general, these “coherent” forms are not compatible with each other.

- The controllable canonical form
 [Steinbuch et al., 2003]
- The balanced form
 [Lovera and Mercere, 2007]
- The modal form
 [Yung, 2002]
- A zero-pole decomposition-based form
 [De Caigny et al., 2009, 2011]
- An observability matrix-based form
 [De Caigny et al., 2014]
Definitions of “Coherent” local models?

Local model “coherence” is rarely defined in the literature.

An existing definition. Regarding an LPV system

\[
\begin{align*}
 x_{k+1} &= A(p)x_k + B(p)u_k + w_k \\
y_k &= C(p)x_k + D(p)u_k + v_k
\end{align*}
\]

a set of LTI models \(\{(A_i, B_i, C_i, D_i), i = 1, \ldots, m\} \) are coherent if there exists some matrix-valued function \(T(p) \) such that

\[
A_i = T(p_i)A(p_i)T^{-1}(p_i) \quad \text{for} \quad i = 1, 2, \ldots, m
\]

and similarly \(B_i = \ldots, C_i = \ldots, D_i = \ldots \)
Comments on this definition

LPV

\[x_{k+1} = A(p)x_k + B(p)u_k + w_k \]
\[y_k = C(p)x_k + D(p)u_k + v_k \]

\[p \in \{p_1, p_2, \ldots, p_m\} \]

LTI

\[\{(A_i, B_i, C_i, D_i), i = 1, 2, \ldots, m\} \]

- LPV\((p_i)\) \(T_i\) \((A_i, B_i, C_i, D_i)\)
- There exists some \(T(p)\) such that \(T_i = T(p_i)\)
- \(T(p)\) and \(T^{-1}(p)\) are continuous and bounded
Randomly generate square matrices of size $n = \dim(x)$, keep only those whose determinants are positive, and use them as T_i.

\[
\text{LPV}(\varphi_i) \xrightarrow{\text{random}} T_i \xrightarrow{} (A_i, B_i, C_i, D_i)
\]
Is this definition relevant?

Then, according to the previous definition, these \textbf{randomly} transformed local models are coherent!

\[
\text{Interpolation}
\]

\[
\text{LPV}(p_i) \xrightarrow{\text{random}} T_i \xrightarrow{} (A_i, B_i, C_i, D_i)
\]

Too much freedom is left to T_i:

There exists \textbf{some} $T(p)$ such that $T_i = T(p_i)$.
Is this definition relevant?

There exists some $T(p)$ such that $T_i = T(p_i)$.

Moreover, the p-dependent $T(p)$ leads, in general, to dynamic parameter dependence.
How should be a relevant coherence definition?

In particular, when \(p \) evolves within \(\{p_1, p_2, \ldots, p_m\} \), no interpolation is necessary:
A new coherence definition proposal

Given a set of LTI models

\[\{ (A_i, B_i, C_i, D_i), i = 1, 2, \ldots, m \} \]

if there exists a transformation matrix \(T \) common to all the \(m \) LTI models, such that

\[\text{LPV}(p_i) \xrightarrow{T} (A_i, B_i, C_i, D_i) \]

then the set of LTI models are coherent.
Difference between the two definitions

New definition

LPV\left(p_i\right) \xrightarrow{T} \left(A_i, B_i, C_i, D_i\right)

Previous definition

LPV\left(p_i\right) \xrightarrow{T_i} \left(A_i, B_i, C_i, D_i\right)

Indexed by i
Property of the proposed definition

When \(p \) evolves within \(\{ p_1, p_2, \ldots, p_m \} \),

This property is only a “necessary condition” for a relevant coherence definition.

Are there \(T(p) \)-based definition satisfying this property?
In general, p-dependent transformations $T(p)$ lead to dynamic p-dependent LPV models.

Consequently, transformations like $A_i = T_i A(p_i) T_i^{-1}$ do not preserve I/O property, in general.
p-dependent transformation?

In general, p-dependent transformations $T(p)$ lead to dynamic p-dependent LPV models. Consequently, transformations like $A_i = T_i A(p_i) T_i^{-1}$ do not preserve I/O property, in general.

However, there do exist $T(p)$ leading to static p-dependent LPV models.

Should such transformations be included in a definition of coherent local models?
p-dependent transformation?

If two static affine p-dependent and state-minimum LPV systems have the same I/O property, then they are related by a p-independent linear transformation. [Petreczky and Mercère 2012]
If two static affine p-dependent and state-minimum LPV systems have the same I/O property, then they are related by a p-independent linear transformation. [Petreczky and Mercère 2012]

For state-minimum models, no generalization to $T(p)$ of the coherence definition is possible.
p-dependent transformation?

If the matrix sum

\[\sum_{i=1}^{m} A(p_i)A^T(p_i) + B(p_i)B^T(p_i) \]

is non singular, then no generalization to $T(p)$ of the coherence definition is possible.

A simpler, but stronger, **yet reasonable**, condition: any of the $A(p_i)$ is non singular.
In most situations, the p-independent coherence definition is the only possible one.
Now the definition of coherent local models is clarified, how can we find the linear transformations making locally estimated models coherent?
If the locally estimated LTI models are structurally independent, then it is impossible to determine linear transformations making them coherent, solely based on these LTI models.

[Zhang and Ljung, Automatica, 2017].
This disappointing result means that such local LTI models do not contain sufficient information to make themselves coherent.
This disappointing result means that such local LTI models do not contain sufficient information to make themselves coherent.

Nevertheless, to make local LTI models coherent, it is possible to use

- global structural assumptions, and/or
- I/O data under some excitation condition.
Make structural assumptions

The LPV interpolation methods based on particular (canonical) forms must be (implicitly) based on some global structural assumptions.

- The controllable canonical form
- The balanced form
- The modal form
- A zero-pole decomposition-based form
- An observability matrix-based form
Within a data sequence, the state “continuity” at p-transitions provides constraints on state bases of local LTI models.
Use I/O data: numerical example

Simulation with coherent LTI models for fast p-transitions.
A few words about interpolation of I/O models

Interpolating local I/O models avoids the problem of coherence, but the resulting LPV model is not suitable for fast p-transitions.

In applications involving model-based simulation (e.g., MPC), somehow a state-space form is necessary, to manage the state “continuity” at p-transitions.
Summary

➢ Local model coherence: definition clarified.

➢ Structurally independent local models do not contain the information to make themselves coherent.

➢ Locally estimated LTI models can be made coherent based on
 ✓ Global structural assumptions
 ✓ I/O data sequences under some excitation condition.
Summary

➢ Local model coherence: definition clarified.

➢ Structurally independent local models do not contain the information to make themselves coherent.

➢ Locally estimated LTI models can be made coherent based on
 ✓ Global structural assumptions
 ✓ I/O data sequences under some excitation condition.

Is this still a local approach?