Inverse source estimation problems in magnetostatics

ERNSI Workshop, Lyon, 2017

Juliette Leblond

INRIA Sophia Antipolis (France), Team APICS

Joint work with: Laurent Baratchart, Sylvain Chevillard, Doug Hardin, Eduardo Lima, Jean-Paul Marmorat, Dmitry Ponomarev

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Context

APICS team, Inria Sophia Antipolis, France

Earth, Atmospheric & Planetary Sciences Dep., MIT Cambridge, Massachusetts, USA

Center for Constructive Approximation Vanderbilt University, Nashville, Tennessee, USA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Magnetization not measurable
 - \rightsquigarrow measures of generated magnetic field
 - \rightsquigarrow inverse problems, non destructive inspection

- Igneous rocks (from Earth volcanoes, lava, magma; basalts)
- Thermoremanent magnetization, ferromagnetic particles (small magnets) follow the magnetic field:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Igneous rocks (from Earth volcanoes, lava, magma; basalts)
- Thermoremanent magnetization, ferromagnetic particles (small magnets) follow the magnetic field:

イロト イポト イヨト イヨト

- Igneous rocks (from Earth volcanoes, lava, magma; basalts)
- Thermoremanent magnetization, ferromagnetic particles (small magnets) follow the magnetic field:

イロト イポト イヨト イヨト

- Igneous rocks (from Earth volcanoes, lava, magma; basalts)
- Thermoremanent magnetization, ferromagnetic particles (small magnets) follow the magnetic field:

イロト イポト イヨト イヨト

- Igneous rocks (from Earth volcanoes, lava, magma; basalts)
- Thermoremanent magnetization, ferromagnetic particles (small magnets) follow the magnetic field:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

- Igneous rocks (from Earth volcanoes, lava, magma; basalts)
- Thermoremanent magnetization, ferromagnetic particles (small magnets) follow the magnetic field:

• Can be subsequently altered, under high pressure or temperature

SQUID microscope

Scanning magnetic microscopes: for weakly magnetized small samples

(MIT, EAPS)

sapphire window

pedestal + sensor

 \rightsquigarrow map of the vertical component of the (tiny) magnetic field on a rectangular region Q above the sample S

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hawaiian Basalt example ~> magnetization recovery

knowing \approx direction of **m** & after re-magnetization (MIT, EAPS) not always feasible...

Problem setting, $B_3 = B_3[m]$

• **m** generates a magnetic field at $\mathbf{x} \notin S$: $\mathbf{B}[\mathbf{m}](\mathbf{x}) = -\mu_0 \nabla U[\mathbf{m}](\mathbf{x})$

where
$$U[\boldsymbol{m}](\boldsymbol{x}) = rac{1}{4\pi} \iint_{S} rac{\langle \boldsymbol{m}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle}{|\boldsymbol{x} - \boldsymbol{y}|^3} d\boldsymbol{y}$$

U scalar magnetic potential, μ_0 magnetic constant, abla 3D gradient

Problem setting, $B_3 = B_3[m]$

• **m** generates a magnetic field at $\mathbf{x} \notin S$: $\mathbf{B}[\mathbf{m}](\mathbf{x}) = -\mu_0 \nabla U[\mathbf{m}](\mathbf{x})$

where
$$U[\boldsymbol{m}](\boldsymbol{x}) = rac{1}{4\pi} \iint_{S} rac{\langle \boldsymbol{m}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle}{|\boldsymbol{x} - \boldsymbol{y}|^3} d\boldsymbol{y}$$

U scalar magnetic potential, μ_0 magnetic constant, ∇ 3D gradient

measurements b₃[m] of vertical component B₃[m] = −μ₀∂_{x₃}U[m] performed on square Q ⊂ ℝ² at height h (incomplete data)

 ∂_{x_i} partial derivative w.r.t. x_i

Problem setting, $B_3 = B_3[m]$

• **m** generates a magnetic field at $\mathbf{x} \notin S$: $\mathbf{B}[\mathbf{m}](\mathbf{x}) = -\mu_0 \nabla U[\mathbf{m}](\mathbf{x})$

where
$$U[\boldsymbol{m}](\boldsymbol{x}) = rac{1}{4\pi} \iint_{\mathcal{S}} rac{\langle \boldsymbol{m}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y}
angle}{|\boldsymbol{x} - \boldsymbol{y}|^3} \mathsf{d} \boldsymbol{y}$$

U scalar magnetic potential, μ_0 magnetic constant, ∇ 3D gradient

measurements b₃[m] of vertical component B₃[m] = −μ₀∂_{x₃}U[m] performed on square Q ⊂ ℝ² at height h (incomplete data)

 ∂_{x_i} partial derivative w.r.t. x_i

 inverse problems: from pointwise values of b₃[m] on Q recover magnetization m or net moment (m) on S

$$\langle \boldsymbol{m}
angle = egin{pmatrix} \langle m_1
angle \ \langle m_2
angle \ \langle m_3
angle \end{pmatrix} , \ \ \langle m_i
angle = \iint_S m_i(\boldsymbol{y}) \, \mathrm{d} \boldsymbol{y}$$

average, $m_i \in L^2(S) \subset L^1(S)$, i = 1, 2, 3

Operators

Put
$$X = (x_1, x_2, x_3) \in \mathbb{R}^3$$

grad $= \nabla = \begin{pmatrix} \partial_{x_1} \\ \partial_{x_2} \\ \partial_{x_3} \end{pmatrix}$ with $\partial_{x_i} = \frac{\partial}{\partial_{x_i}}$
div $= \nabla \cdot$, curl $= \nabla \times$

$$\mathsf{Laplacian} \ = \Delta = \mathsf{div}\,(\mathsf{grad}) = \nabla \cdot \nabla = \partial_{x_1^2}^2 + \partial_{x_2^2}^2 + \partial_{x_3^2}^2$$

Poisson-Laplace equation with source term in divergence form:

Maxwell, magnetostatics, time-harmonic, macroscopic

$$\left\{ \begin{array}{l} \Delta \ U[\boldsymbol{m}] = \nabla \cdot \boldsymbol{m} \ \, \text{in } \mathbb{R}^3 \,, \ \, \text{supp } \boldsymbol{m} \subset S \times \{0\} \\ B_3 = B_3[\boldsymbol{m}] = \partial_{x_3} \ U[\boldsymbol{m}] \end{array} \right.$$

 $U[\boldsymbol{m}]$ and $B_3[\boldsymbol{m}]$ harmonic functions in $\{x_3 > 0\}$

$$b_{3}[\boldsymbol{m}] = B_{3}[\boldsymbol{m}]_{|Q \times \{h\}} \text{ on } Q \times \{h\} \rightsquigarrow \langle \boldsymbol{m} \rangle \text{ or } \boldsymbol{m} \text{ on } S \times \{0\} ?$$
$$\langle \boldsymbol{m} \rangle = \iint_{S} \boldsymbol{m}(\boldsymbol{y}) \, d\, \boldsymbol{y} \in \mathbb{R}^{3}, \quad \boldsymbol{m} \in L^{2}(S, \mathbb{R}^{3}), \quad b_{3}[\boldsymbol{m}] \in L^{2}(Q)$$

Integral expression for $(x_1, x_2) \in Q$

(also in terms of Poisson and Riesz transforms)

$$b_{3}[\mathbf{m}](x_{1}, x_{2}) = -\frac{\mu_{0}}{4\pi} \times \left(\partial_{x_{3}} \iint_{S} \frac{m_{1}(\mathbf{y})(x_{1} - y_{1}) + m_{2}(\mathbf{y})(x_{2} - y_{2}) + m_{3}(\mathbf{y})x_{3}}{((x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2} + x_{3}^{2})^{3/2}} d\mathbf{y} \right)_{|x_{3}=h} \quad \mathbf{y} = (y_{1}, y_{2})$$

Data: $b_3[\mathbf{m}]$ on Q

- net moment ⟨m_i⟩ estimation: uniqueness, unstability → regularization (BEP)
- preliminary step for magnetization recovery (non-uniqueness):
 → mean values ⟨m_i⟩ of m_i on S → ⟨m⟩
 → direction of m

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Linear map:

$$b_3: \left\{ egin{array}{l} L^2(S,\mathbb{R}^3) o L^2(Q) \ egin{array}{l} m{m} \mapsto B_3[m{m}]_{|Q imes \{h\}} = b_3[m{m}] \end{array}
ight.$$

Magnetization recovery (full inversion): recover *m* from b₃[*m*]
 → ill-posed (non uniqueness) because Ker b₃ ≠ {0}, silent sources

• Linear map:

$$b_3: \left\{ egin{array}{l} L^2(S,\mathbb{R}^3)
ightarrow L^2(Q) \ egin{array}{l} m{m}\mapsto B_3[m{m}]_{|Q imes\{h\}}=b_3[m{m}] \end{array}
ight.$$

- Magnetization recovery (full inversion): recover *m* from b₃[*m*]
 → ill-posed (non uniqueness) because Ker b₃ ≠ {0}, silent sources
- Moment recovery: well-defined

 $i \in \{1, 2, 3\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\left\{ \begin{array}{l} \mathsf{Ran} \ b_3 \to \mathbb{R} \\ b_3[\boldsymbol{m}] \mapsto \langle m_i \rangle \end{array} \right.$$

• Linear map:

$$b_3: \left\{ egin{array}{l} L^2(S,\mathbb{R}^3)
ightarrow L^2(Q) \ egin{array}{l} m{m}\mapsto B_3[m{m}]_{|Q imes\{h\}}=b_3[m{m}] \end{array}
ight.$$

- Magnetization recovery (full inversion): recover *m* from b₃[*m*]
 → ill-posed (non uniqueness) because Ker b₃ ≠ {0}, silent sources
- Moment recovery: well-defined

$$\left\{ \begin{array}{l} \mathsf{Ran} \ b_3 \to \mathbb{R} \\ b_3[\boldsymbol{m}] \mapsto \langle m_i \rangle \end{array} \right.$$

• Strategy: linear estimator $\forall m \text{ of given norm, once and for all} find test functions <math>\phi_i \in L^2(Q)$ such that $\langle \phi_i, b_3[m] \rangle_{L^2(Q)} \simeq \langle m_i \rangle$ \rightsquigarrow best constrained approximation problems (BEP)

and asymptotic formulas, for large measurement area Q

Direct inversion of associated discrete problem: heavy, unstable

 $i \in \{1, 2, 3\}$

Strategy for net moment recovery

Determine $\phi_i \in L^2(Q)$ such that $\langle b_3[\boldsymbol{m}], \phi_i \rangle_Q \simeq \langle m_i \rangle = \langle \boldsymbol{m}, \boldsymbol{e}_i \rangle_S$

 $\langle .,.\rangle_{L^2(Q)}, \langle .,.\rangle_{L^2(Q,\mathbb{R}^2)} \rightsquigarrow \langle .,.\rangle_Q, \|.\|_Q, \quad \langle .,.\rangle_S \rightsquigarrow \langle .,.\rangle_S, \|.\|_S$

 ${\bm e}_1 = (1,0,0)\,, \ {\bm e}_2 = (0,1,0)\,, \ {\bm e}_3 = (0,0,1)$ on S

 $\langle b_3[m], \phi_i \rangle_Q = \langle m, b_3^*[\phi_i] \rangle_S$ with adjoint operator $b_3^* : L^2(Q) \to L^2(S, \mathbb{R}^3)$ to b_3

 \rightsquigarrow linear estimator for moment $\langle m_i \rangle$ given bound on $\|m\|_S$

 \leadsto trade-off between prescribed accuracy \simeq and norm of ϕ_i ______ in Sobolev space, $^{L^2}$ norm of gradient of ϕ

→ stability w.r.t. measurement errors, robustness

Tools for analysis

- Properties of Hilbert Sobolev spaces $W_0^{1,2}(\Omega) \subset L^2(\Omega)$ $\Omega \subset \mathbb{R}^2$
- Integral expression of $b_3[m]$ in terms of Poisson and Riesz transforms
- Properties of operator b₃ and its adjoint b^{*}₃
 - $e_i \perp \text{Ker } b_3$: silent sources possess vanishing net moments

 \rightsquigarrow uniqueness of $\langle \boldsymbol{m} \rangle$ from $b_3 \left[\boldsymbol{m} \right]$

Ran b₃ dense in L²(Q)

Net moment recovery, strategy

• no hope to find $\phi \in L^2(Q)$ such that

$$\langle b_3[\boldsymbol{m}], \phi \rangle_Q - \langle m_i \rangle = 0 \quad \forall \boldsymbol{m} \in L^2(S, \mathbb{R}^3)$$

because $\pmb{e}_i \not\in \mathsf{Ran}\, b_3^*$ and $\langle b_3 \left[\pmb{m} \right], \ \phi \rangle_Q - \langle m_i \rangle = \langle \pmb{m} \, , \ b_3^* \left[\phi \right] - \pmb{e}_i \rangle_S$

• however, density result for $\boldsymbol{m} \in L^2(S,\mathbb{R}^3)$

$$\exists \phi_n \in W_0^{1,2}(Q) \text{ s.t. } |\langle b_3[\boldsymbol{m}], \phi_n \rangle_Q - \langle m_i \rangle| \to 0 \qquad \text{ as } n \to \infty$$

$$\inf_{\phi \in W_0^{1,2}(Q)} \left| \langle b_3[\boldsymbol{m}], \phi \rangle_Q - \langle m_i \rangle \right| = 0$$

• but it satisfies $\|\nabla_2 \phi_n\|_Q \to \infty$ \rightsquigarrow unstability

for $\boldsymbol{m} \in L^2(\mathcal{S}, \mathbb{R}^3)$, we can find $\phi \in W_0^{1,2}(\mathcal{Q}) \subset L^2(\mathcal{Q})$ s.t. $|\langle b_3[\boldsymbol{m}], \phi \rangle_{\mathcal{Q}} - \langle m_i \rangle|$ arbitrarily small

at the expense of arbitrarily large $\| \nabla_2 \phi \|_Q$

 \rightarrow needs for regularization, trade-off (error / constraint)

Bounded extremal problem

$$\left| \langle b_3 \left[\boldsymbol{m} \right], \phi \rangle_Q - \langle \boldsymbol{m}_i \rangle \right| = \left| \langle \boldsymbol{m}, b_3^* \left[\phi \right] - \boldsymbol{e}_i \rangle_S \right| \le \|\boldsymbol{m}\|_S \|b_3^* \left[\phi \right] - \boldsymbol{e}_i \|_S$$

Best constrained approximation, optimization issue M > 0

• \exists unique solution $\phi_* \in W^{1,2}_0(Q)$ to (BEP)

$$\|b_{3}^{*}[\phi_{*}] - \boldsymbol{e}_{i}\|_{S} = \min_{\phi \in W_{0}^{1,2}(Q), \|\nabla_{2}\phi\|_{Q} \le M} \|b_{3}^{*}[\phi] - \boldsymbol{e}_{i}\|_{S}$$

and $\|\nabla_2 \phi_*\|_Q = M$

it satisfies the critical point equation (CPE) → Tykhonov type regularization

$$b_3 \: b_3^* \: [\phi_*] - \lambda \: \Delta_2 \: \phi_* = b_3 \: [oldsymbol{e}_i]$$
 on Q

 $\text{for unique } \lambda > 0 \text{ s.t. } \| \nabla_2 \, \phi_* \|_Q = M \qquad \qquad \text{also, } \phi_* \in \mathit{C}^{1/2}(\bar{\mathcal{Q}})$

Lagrange parameter $\lambda \to 0$ iff constraint $M \to \infty$ & criterion error $\to 0 \rightsquigarrow$ resolution algorithm: iterate in λ

Ongoing, solving (CPE), preliminary numerics

 $b_3[m]$ on Q

synthetic data (matlab)

simulated m, b3[m]

 $R = 2.55, s = 1.97, h = 0.27 \text{ mm}, |Q|/|S| \simeq 1.3, |S|/h \simeq 14.6$

100 × 100 overlapping squares, finite elements \mathbb{P}_0 on S \mathbb{Q}_1 on Q, for $W_0^{1,2}(Q)$ basis functions ψ

(CPE) Dirichlet problems for elliptic 2D PDE: $\phi_* \in W_0^{1,2}(Q)$, $\phi_{*|\partial Q} = 0$ $\langle b_3^* \ [\phi_*] \ , \ b_3^* \ [\psi] \rangle_S + \lambda \langle \nabla_2 \phi_* \ , \ \nabla_2 \psi \rangle_Q = \langle b_3 \ [e_i] \ , \ \psi \rangle_Q$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

 \rightsquigarrow towards a numerical magnetometer, $\phi_* = \phi_{e_i}$, i = 1, 2, 3

criterion error (cost) on S

 $\|b_{3}^{*}[\phi_{e_{i}}] - e_{i}\|_{S}$

constraint M on Q

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $\|\nabla_2 \phi_{\boldsymbol{e}_i}\|_Q$

for i = 1, 3, w.r.t. $\log_{10}(\lambda)$

L-curves, i = 1 (left), i = 3 (right):

criterion error on S w.r.t. constraint M on Q, at values of λ

$$\left\| b_3^* \left[\phi_{\boldsymbol{e}_i} \right] - \boldsymbol{e}_i \right\|_S$$
 w.r.t. $\left\| \nabla_2 \phi_{\boldsymbol{e}_i} \right\|_Q$

3

(日)、

→ trade-off between error and constraint

 $\phi_{e_i}(\lambda_2)$ on Q, for i = 1, 2, 3

 $\lambda_2 = 10^{-8}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1st row: actual values of components $\langle m_i \rangle$, i = 1, 2, 3

	-7.4059e-05	-1.1218e-04	4.0880e-05	
$\lambda = 10^{-6}$	-6.4500e-05	-9.4439e-05	3.9343e-05	14.38%
10 ⁻⁷	-6.7673e-05	-1.0144e-04	3.9859e-05	8.92%
10 ⁻⁸	-6.9700e-05	-1.0586e-04	4.0132e-05	5.49%
10 ⁻⁹	-7.1047e-05	-1.0861e-04	4.0319e-05	3.35%
10 ⁻¹⁰	-7.2020e-05	-1.1031e-04	4.0461e-05	1.99%
10^-11	-7.2749e-05	-1.1128e-04	4.0578e-05	1.15%
10 ⁻¹²	-7.3267e-05	-1.1180e-04	4.0664e-05	0.64%

next rows: estimated values values $\langle b_3[\mathbf{m}], \phi_{\mathbf{e}_i}[\lambda] \rangle_Q$ last column: relative errors on moment $\langle \mathbf{m} \rangle$

Ongoing, next

• Resolution schemes, numerical analysis (ctn), test noisy & actual data & other resolution schemes:

• iterative,
$$\phi_n \rightarrow \phi_* = \phi_{e_i}$$

 $-\lambda \varrho \Delta_2 \phi_n + \phi_n = -\varrho b_3 b_3^* [\phi_{n-1}] + \phi_{n-1} + \varrho b_3 [e_i] \text{ and } \phi_{n|\partial Q} = 0, n \ge 1$

- in Fourier basis product of sin of separated variables
- asymptotic estimations
 |Q| > |S| or R > s
- Local moments determined by $b_3[m]$ if m of minimal $L^2(S)$ norm
- (BEP) for general $e \in \overline{\operatorname{\mathsf{Ran}} b_3^*} \setminus \operatorname{\mathsf{Ran}} b_3^* \rightsquigarrow$ higher order moments

• Use $\langle \boldsymbol{m}
angle$ for magnetization \boldsymbol{m} estimation

References

• L. Baratchart, D. Hardin, E.A. Lima, E.B. Saff, B.P. Weiss, Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions, Inverse Problems, 2013

• L. Baratchart, S. Chevillard, J. Leblond, Silent and equivalent magnetic distributions on thin plates, Theta Series in Advanced Mathematics, to appear, hal-01286117

Also, in planetary sciences, paleomagnetism:

- magnetizations m in $L^1(S, \mathbb{R}^3)$ or distributions
- for 3D samples S, pointwise dipolar sources

chondrules, also Moon rocks, ...

In brain imaging (medical engineering), electroencephalography (EEG), source and conductivity inverse problems, spherical geometry, software FindSources3D (+ MEG)