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Prior Knowledge

Data-driven model relies not only on data:

e additional bits can take many forms: knowledge in the field, users beliefs,
experience, assumptions, etc

Example

Yo = flu) = ) 0idi(u),  C(0),

where C(0) is some form of constraint; we will call it the prior.
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Example: Impulse Response

Number of data points (4096) and excitation (almost) white noise, noise level
figures: g(t) estimated by LS or by LS + reg

prior encodes: exponential decaying envelope, and smooth weights

second plot: RMS error as function of weigh delay (RMS values)

Akaike turns off coefficients above about t = 40.

Schoukens, Rasmussen (Vrije Uni Brussel, Cambridge) Bayesian SYSID Lyon, September 24-27, 2017 4/14



Example: Impulse Response continued
Estimated LS FIR Estimated RLS FIR
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The nature of the modeling problem

Prior information is often qualitative:

e stable
e smooth
e stationarity (invariances)

* positivity, monotonicity

The quantification (strength, or scale) of this information is inferred from the
data through hyperparameters.
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Diagram of methodologies

Maximum likelihood Regularization framework Bayes

Cost: Cost: Cost:
negative log likelihood + discrete penalty negative log likelihood + lambda times regulariser  negative log likelihood +
negative log prior

Classical: Sl + AIC, BIC, CV Regularized S|
Procedure: Procedure:
double optimisation two levels: parameters + hyperparameters

parameters (continuous)
model (discrete)

optimize: optimize:

CV or marginal likelihood for hypers marginal likelihood for hypers

optimisation for parameters .

(condition on hypers) parameter posterior
Results: Results: Results:
parameter point estimate parameter point estimate parameter posterior
parameter covariance (data driven) parameter covariance (data + regularizer) predictive distribution

(MCMC or approx)

Schoukens, Rasmussen (Vrije Uni Brussel, Cambridge) Bayesian SYSID Lyon, September 24-27, 2017 7114



Regression comparison
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Comparing BIC with Gaussian process. Model uncertainty (95% confidence) in
light grey, data uncertainty in dark grey.

BIC uses a small number of basis functions, leads to under-fitting and
overconfidence.

GP uses infinitely many basis functions.
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Robustness of solutions to prior, step example
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Comparing BIC with Gaussian process. Data from step function, prior for
stationary function, not well matched.
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Robustness of solutions to prior, exp example
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Data from exp function, prior for stationary function.

BIC selects a single basis function, overconfident for neg arguments. GP

extrapolates poorly.
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Marginalize or optimise?

When optimising, overfitting becomes a problem. The optimiser will find
solutions which agree well with the particular training set observed, but doesn’t
generalize well. This motivates regularisation and working with small models
(Akaike, etc). Often external information (validation sets) are used to control
complexity.

When marginalising, overfitting does not happen. Instead, in large models with
vague priors the large uncertainties will remain; the predictive error-bars will be
large. Internal measures (the marginal likelihood) will show the problem (no
external information is required).

Unfortunately, whereas non-linear optimisation is hard, marginalisation is
REALLY hard. Bayesian methods generally require 1) MCMC techniques for
inference, or 2) specific model classes, such as Gaussian processes, or 3) analytic
approximations (eg variational).
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Marginalize or Optimize

Although the use of a regulariser and prior look very similar (sometime even
identical expressions), in fact these a quite different: In optimisation only the
properties of the regulariser around the optimum are important, but in Bayes the
whole prior distribution is important. This fact is typically overlooked.

Marginalisation is mostly harder, and leads to a less convenient result, but may
provide better uncertainty estimates.

The tricky thing may become understanding the prior distribution.
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possible discussion points

priors can be useful for interpretation for generative models

prior specification is invariance to how much data will be available
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Conclusions

Main message:

* data driven modeling uses more information than in the data

* Bayesian framework is systematic way of dealing with non-data information

so: max likelihood systematic treatment of noisy data, Bayes systematic treatment
of noisy data and priors

The regularization framework may be interpreted as a Bayesian procedure in the
mono-modal (Gaussian) case

Posterior interpretation of prior can help interpretation
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Bayesian complexity control

A

P(YIM)

"just right"

All possible data sets
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