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Inverse response
What is it?
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Inverse response
What is it?
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Inverse response
What is it?
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Inverse response
Where does it occur?

• Aircraft — pitch to climb.

• Process control — increase water flow to drum boiler.

• Neuroscience — Hodgkin-Huxley voltage clamp (nerve axon).

• Economics — devalue currency to improve balance of payments.
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What is already known?
Odd number of zeros in RHP

We consider LTI SISO systems only.
Let ys(t) be step response of system G (s).

G (s) =
(s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)
, m < n, <(pi ) < 0, zi 6= 0, ∀i

ys(0) = 0 and ys(∞) =
(−z1)(−z2) · · · (−zm)

(−p1)(−p2) · · · (−pn)

−pi > 0 so ys(∞) < 0 if and only if there is an odd number of zeros in
the RHP.
From Initial Value Theorem:

dkys(t)

dtk

∣∣∣∣
t=0

= 0 for k < n −m, and
dn−mys(t)

dtn−m

∣∣∣∣
t=0

= 1
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What is already known?
Odd number of zeros in RHP

• So ys(t) > 0 for small enough t.

• But ys(∞) < 0 iff there is an odd number of zeros in the RHP.

• So, if you define inverse response to be

sign ys(ε) = −sign ys(∞) for small enough ε

then at least one zero in RHP is necessary
and an odd number of zeros in RHP is sufficient.

(Norimatsu and Ito 1961, Vidyasagar 1986).

• This result extends(?) to irrational transfer functions
(El-Khoury et.al. 1993, Widder 1934) — needs different approach.
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What is already known?
Positive real zeros

• Define inverse response as:
∃t1, t2 : signys(t) =
−signys(∞) for t ∈ [t1, t2]

• G (z) = 0 for positive real z is
sufficient for inverse response.

• Proof:

0 =
G (z)

z
=

∫ ∞
0

ys(t)e−ztdt and e−zt > 0.

(Stewart and Davison 2006)
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What is already known?
Complex zeros in the RHP are not sufficient for inverse response

Complex zeros in
RHP are not
sufficient

0 2 4 6 8 10 12 14
-0.5

0

0.5

1

1.5

2
Step Response

Time (seconds)

Am
pl

itu
de Real zeros in RHP

are not necessary

s2−0.2s+2
(s+1)3

s2−2s+2
(s+1)3

Zeros at 0.1± 1.41i Zeros at 1± i

7/16



Are RHP zeros necessary for inverse response?
Short answer: No
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• Final value = 8.6× 10−4 > 0.

• Not what we mean by
‘inverse response’.

• Define ρ-inverse response as:
signys(t) = −signys(∞), t ∈ [t1, t2] and
|ys (∞)|

supt>0 |ys (t)|
≥ ρ, (0 < ρ ≤ 1).

• Claim: ‘Inverse response’ really means
‘ρ-inverse response with ρ “close to” 1’.
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Are RHP zeros necessary for 1-inverse response?
No
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RHP zeros necessary for 1-inverse response if real poles only?
No: 4th order system
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RHP zeros necessary for 1-inverse response if real poles only?
No: 9th order system
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Poles: −420.9554, −3.0211,−2.7254,−1.8889,−1.6949,−1.4678,

−0.6926,−0.1686, −0.0001.

Zeros: −8.4498× 105,−6.6269× 104, −1.5655× 103 ± 81.032i ,

−478.39± 58.595i ,−14.043± 46.966i .
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Searching for counter-examples
Optimise over bounded domain

• Search over interior of unit disk.
• Use Levinson-Durbin parametrisation of Schur polynomials.
• Use root positions to parametrise Schur polynomials with real roots.

• Use bilinear mapping from {z : |z | < 1} to {s : <(s) < 0}.
• s ↔ z − 1

z + 1
or z ↔ 1 + s

1− s
• Maps from Schur to Hurwitz polynomials.
• Linear mapping between polynomial coefficients.

• Optimisation: minimise |ys(1)− α|
• α = 0 or α = −1 or . . .
• Can choose t = 1 wlog, because f (t/β)↔ βF (βs)
• Note that ys(∞) > 0 since we allow only LHP poles and zeros.
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Searching for counter-examples
Levinson-Durbin algorithm

• 1-1 mapping between Schur polynomials and reflection coefficients.
(Think of polynomial as AR process.)

• p(z) = p0z
k + p1z

k−1 + · · ·+ pk , p = [p0, p1, . . . , pk ]T

p̄(z) = pkz
k + pk−1z

k−1 + · · · p0, p̄ = [pk , pk−1, . . . , p0]T .

• p = 1; for k = 1 : n,

p =

[
p
0

]
+

[
0

r(k)p̄

]
end

• Theorem: |r(k)| < 1 and r(k) ∈ R for 1 ≤ k ≤ n gives
monic Schur p(z) of degree n.
To every such p(z) there corresponds a unique set
{r(k) : |r(k)| < 1, r(k) ∈ R, k = 1, . . . , n}.
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Searching for counter-examples
Implementation of bilinear mapping: Pascal matrix

1. Start with Schur polynomial p(z) = p0z
n + p1z

n−1 + · · ·+ pn.

2. Let
q(s)

(1− s)n
= p

(
1 + s

1− s

)
and q(s) = q0s

n + q1s
n−1 + · · ·+ qn.

3. Then q(s) is Hurwitz and q = Pp, where

p = [p0, p1, . . . , pn]T , q = [q0, q1, . . . , qn]T

P(1, j) = 1, P(i , n + 1) = (−1)i−1
(
n

i

)
P(i , j) = P(i − 1, j) + P(i − 1, j + 1) + P(i , j + 1) for i > 1, j < n + 1.

4. Useful fact (but not needed here): P−1 = 2−nP.
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Searching for counter-examples
Optimisation algorithm

• fmincon with default options (= Interior Point)
• Don’t need global optimum.
• Start from MAXRAND initial guesses.
• Up to MAXITER steps from each initial guess.

• Search gets easier as order is increased
• eg n = 3: failure with MAXRAND = 40 and MAXITER = 100,
• but n = 9: only needs 2 initial guesses and 10–20 steps.

• No need to normalise (eg q0 = 1) or to remove pole-zero
cancellations.
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Conclusions

• RHP zeros are not necessary for inverse response.

• But excluding them can lead to strange behaviours
• Time scale separation
• Initial transient often reaches final value.
• Implications for feedback design?

• If you want a low-order black-box model then allowing RHP zeros
makes life easier — especially with only real poles.

• Real RHP zeros are sufficient for inverse response.

• If the initial response is in the “wrong” direction then real RHP
zeros are necessary.
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