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Inverse response

What is it?
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Inverse response

What is it?
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Inverse response

Where does it occur?

e Aircraft — pitch to climb.
e Process control — increase water flow to drum boiler.
 Neuroscience — Hodgkin-Huxley voltage clamp (nerve axon).

e Economics — devalue currency to improve balance of payments.
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What is already known?

Odd number of zeros in RHP

We consider LTI SISO systems only.
Let ys(t) be step response of system G(s).

_mn)s—z) e (smam) ey o o
G(S)_(s—pl)(s—p2)~-~(s—p,,)’ <n, R(p) <0, z#0,V

(—z1)(=2) - (~2zm)
(=p1)(=p2) -+~ (=pPn)

—p;i > 0 s0 ys(0c0) < 0 if and only if there is an odd number of zeros in

¥5(0)=0 and  ys(o0) =

the RHP.
From Initial Value Theorem:
dk ot qn—m :
ys(t) =0for k<n—m, and —y(t) =1
dtk dtn—m

t=0
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What is already known?

Odd number of zeros in RHP

* So ys(t) > 0 for small enough t.
e But ys(c0) < 0 iff there is an odd number of zeros in the RHP.
e So, if you define inverse response to be
sign ys(¢) = —sign ys(00) for small enough ¢
then at least one zero in RHP is necessary
and an odd number of zeros in RHP is sufficient.
(Norimatsu and Ito 1961, Vidyasagar 1986).

* This result extends(?) to irrational transfer functions
(El-Khoury et.al. 1993, Widder 1934) — needs different approach.
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What is already known?

Positive real zeros

Step Response

e Define inverse response as:
Jty, to : signys(t) =
—signys(o0) for t € [t, ]

Ampitude

e G(z) = 0 for positive real z is
sufficient for inverse response.

Time (seconds)

* Proof:

oo
0= :/ ys(t)e #dt and e 7 >0.
0

(Stewart and Davison 2006)
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What is already known?

Complex zeros in the RHP are not sufficient for inverse response

Step Response

Complex: zeros in , - Real zeros in RHP
RHP are not

. are not necessary
sufficient

Amplitude
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Are RHP zeros necessary for inverse response?

Short answer: No

Step Response

e Final value = 8.6 x 10=* > 0.

¢ Not what we mean by
‘inverse response’.

¢ Define p-inverse response as:
signys(t) = —signys(c0), t € [t1, to] and

s 2 P (0<p <)

e Claim: ‘Inverse response’ really means
s + 0.08707 ‘p-inverse response with p “close to” 1'.
s?2 +6.041s + 101.4
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Are RHP zeros necessary for 1-inverse response?

No

Step Response

T eeconda Poles: —0.9385 4+ 3.7971/,
Poles: —0.0395 an.d —0.5400 + 0.6116/ and —0.1584.
—1.2200 + 4.0901,. Zeros: —0.3486 4+ 1.2712/ and
Zeros: —0.2964 + 0.6064/. —0.2262 £ 0.3714i.
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RHP zeros necessary for 1-inverse response if real poles only?

No: 4th order system

. Step Response Step Response
Poles: \ —4.3453, —4.2058, —4.1918, | —0.0004.
Zeros: \ —0.0072 £ 0.23434, | —0.0275.
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RHP zeros necessary for 1-inverse response if real poles only?

No: 9th order system

Step Response Step Response

o B e P o . » 0 1000 2000 3000 aou%me?:s; ndss)vuu 7000 8000 9000 10000
Time (seconds)

Poles: [ —420.9554, | —3.0211, —2.7254, —1.8889, —1.6949, —1.4678,
—0.6926, —0.1686, [ —0.0001.

Zeros: \ —8.4498 x 10°, —6.6269 x 10%, | —1.5655 x 103 % 81.032i,
—478.39 £ 58.505/, —14.043 + 46.966.
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Searching for counter-examples

Optimise over bounded domain

o Search over interior of unit disk.

e Use Levinson-Durbin parametrisation of Schur polynomials.

e Use root positions to parametrise Schur polynomials with real roots.
¢ Use bilinear mapping from {z : |z| < 1} to {s: R(s) < 0}.

z—1 1+s
® S 1orz<—>

—s
e Maps from Schur to Hurwitz polynomials.
e Linear mapping between polynomial coefficients.

e Optimisation: minimise |ys(1) — ¢
e a=0ora=-1or...

e Can choose t = 1 wlog, because f(t/8) <> BF(Ss)
* Note that ys(co) > 0 since we allow only LHP poles and zeros.
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Searching for counter-examples

Levinson-Durbin algorithm

e 1-1 mapping between Schur polynomials and reflection coefficients.

(Think of polynomial as AR process.)
e p(z) = poz* + p1Z" M+ 4 pe, p=[po, pr. - Pkl

p(z) = pkz" + pr—1z" L+ po, B = [Pk, Pk—1,- -+ P0] "
ep=1fork=1:n,

_|P 0
S
end

e Theorem: |r(k)| <1 and r(k) € R for 1 < k < n gives

monic Schur p(z) of degree n.

To every such p(z) there corresponds a unique set
{r(k) : [r(k)| <1, r(k) eR, k=1,...,n}.
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Searching for counter-examples

Implementation of bilinear mapping: Pascal matrix

1. Start with Schur polynomial p(z) = poz” + p1z" L + -+ + p,.

1
2. Let (qusz)n =p <£) and g(s) = qos" + q1s" L+ - - + qp.

3. Then q(s) is Hurwitz and q = Pp, where

P=1[po.p1.---»Pal"s a=1[q0,q1,---,qn]"
P =1 P+ = (- (7)
]
P(i,j)=P(i—1,j)+ P(i —1,j + 1)+ P(i,j + 1) for i > 1,j < n+ 1.

4. Useful fact (but not needed here): P~1 =2-"p.
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Searching for counter-examples

Optimisation algorithm

e fmincon with default options (= Interior Point)
e Don't need global optimum.
e Start from MAXRAND initial guesses.
e Up to MAXITER steps from each initial guess.
e Search gets easier as order is increased
e eg n = 3: failure with MAXRAND = 40 and MAXITER = 100,
® but n = 9: only needs 2 initial guesses and 10-20 steps.
e No need to normalise (eg go = 1) or to remove pole-zero
cancellations.
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Conclusions

e RHP zeros are not necessary for inverse response.
e But excluding them can lead to strange behaviours

e Time scale separation
¢ |nitial transient often reaches final value.
e Implications for feedback design?

e If you want a low-order black-box model then allowing RHP zeros
makes life easier — especially with only real poles.

e Real RHP zeros are sufficient for inverse response.

e If the initial response is in the “wrong” direction then real RHP
Zeros are necessary.




