Estimating effective connectivity in linear brain network models

G. Prando, M. Zorzi, A. Bertoldo, A. Chiuso

Department of Information Engineering - University of Padova

September 27th 2017

What is effective connectivity?

• It describes the Causal influences that neural units exert over another, either at a synaptic or population level

What

• It is described by a **Causal model** of interactions between the elements of the neural system

Why do we need system identification?

What	• It describes the Causal influences that neural units exert over another, either at a synaptic or population level
	• It is described by a Causal model of interactions between the elements of the neural system

Why

• It has to be estimated from noisy brain time-series

What	• It describes the causal influences that neural units exert over another, either at a synaptic or population level
	 It is described by a Causal model of interactions between the elements of the neural system

Why

• It has to be estimated from noisy brain time-series

How is effective connectivity estimated?

Why

• It has to be estimated from noisy brain time-series

Why

What	 It describes the causal influences that neural units exert over another, either at a synaptic or population level
	• It is described by a Causal model of interactions between the elements of the neural system

It has to be estimated from noisy brain time-series

fMRI signal

- fMRI has
 - high spatial resolution (1-5 mm)
 - low temporal resolution (sampling time $T_R \approx sec$)
- fMRI measures the BOLD signal (Blood Oxygenation Level Dependent signal)

fMRI signal

- fMRI has
 - high spatial resolution (1-5 mm)
 - low temporal resolution (sampling time $T_R \approx sec$)
- fMRI measures the BOLD signal (Blood Oxygenation Level Dependent signal)
 - BOLD is an indirect measure of neuronal activity

fMRI signal

- fMRI has
 - high spatial resolution (1-5 mm)
 - low temporal resolution (sampling time $T_R \approx sec$)
- fMRI measures the BOLD signal (Blood Oxygenation Level Dependent signal)
 - BOLD is an indirect measure of neuronal activity

To estimate effective connectivity we need a generative model of the fMRI signal

Stochastic DCM

Stochastic DCM

Stochastic DCM

1. Postulate a set of candidate models $m^{(\ell)}$ (connectivity patterns)

- 1. Postulate a set of candidate models $m^{(\ell)}$ (connectivity patterns)
- 2. Use Variational Bayes

$$\ln p(y|\mathbf{m}^{(\ell)}) = \underbrace{\mathcal{F}\left(q(\theta|\mathbf{m}^{(\ell)})\right)}_{\mathcal{F}\left(q(\theta|\mathbf{m}^{(\ell)})\right)} + KL\left(q(\theta|\mathbf{m}^{(\ell)}) \mid | p(\theta|y, \mathbf{m}^{(\ell)})\right)$$
$$\underbrace{\mathcal{F}\left(q(\theta|\mathbf{m}^{(\ell)})\right)}_{\mathcal{F}\left(q(\theta|\mathbf{m}^{(\ell)})\right)} = \int q(\theta|\mathbf{m}^{(\ell)}) \frac{\ln p(y, \theta)}{\ln q(\theta|\mathbf{m}^{(\ell)})} d\theta$$

- 1. Postulate a set of candidate models $m^{(\ell)}$ (connectivity patterns)
- 2. Use Variational Bayes

$$\ln p(y|\mathrm{m}^{(\ell)}) = \mathcal{F}\left(q(\theta|\mathrm{m}^{(\ell)})\right) + \mathcal{K}L\left(q(\theta|\mathrm{m}^{(\ell)}) \mid\mid p(\theta|y,\mathrm{m}^{(\ell)})\right)$$

$$q^*(heta | \mathrm{m}^{(\ell)}) = rg\max_{q(heta)} \mathcal{F}\left(q(heta | \mathrm{m}^{(\ell)})
ight)$$

- 1. Postulate a set of candidate models $m^{(\ell)}$ (connectivity patterns)
- 2. Use Variational Bayes

$$\ln p(y|\mathbf{m}^{(\ell)}) = \mathcal{F}\left(q(\theta|\mathbf{m}^{(\ell)})\right) + \mathcal{K}L\left(q(\theta|\mathbf{m}^{(\ell)}) \mid\mid p(\theta|y,\mathbf{m}^{(\ell)})\right)$$

$$q^*(heta | \mathrm{m}^{(\ell)}) = rg\max_{q(heta)} \mathcal{F}\left(q(heta | \mathrm{m}^{(\ell)})
ight)$$

• Mean-field assumption

$$q(\theta|\mathbf{m}^{(\ell)}) = \prod_{i} q_i(\theta_i|\mathbf{m}^{(\ell)}) \implies q_i^*(\theta_i|\mathbf{m}^{(\ell)}) = \frac{1}{C} \exp\left(\mathbb{E}_{j\neq i} \ln[p(y,\theta)]\right)$$

- 1. Postulate a set of candidate models $m^{(\ell)}$ (connectivity patterns)
- 2. Use Variational Bayes

$$\ln p(y|\mathbf{m}^{(\ell)}) = \mathcal{F}\left(q(\theta|\mathbf{m}^{(\ell)})\right) + \mathcal{K}L\left(q(\theta|\mathbf{m}^{(\ell)}) \mid\mid p(\theta|y,\mathbf{m}^{(\ell)})\right)$$

$$q^*(heta | \mathrm{m}^{(\ell)}) = rg\max_{q(heta)} \mathcal{F}\left(q(heta | \mathrm{m}^{(\ell)})
ight)$$

• Mean-field assumption

$$q(\theta|\mathbf{m}^{(\ell)}) = \prod_{i} q_i(\theta_i|\mathbf{m}^{(\ell)}) \implies q_i^*(\theta_i|\mathbf{m}^{(\ell)}) = \frac{1}{C} \exp\left(\mathbb{E}_{j\neq i} \ln[p(y,\theta)]\right)$$

Laplace assumption

$$p(\theta_i|y) \sim \mathcal{N}(\hat{\theta}_i, \hat{\Sigma}_i), \quad q_i(\theta_i|\mathbf{m}^{(\ell)}) \sim \mathcal{N}(\mu, P) \implies q_i^* \sim \mathcal{N}(\hat{\theta}_i, \hat{\Sigma}_i)$$

- 1. Postulate a set of candidate models $m^{(\ell)}$ (connectivity patterns)
- 2. Use Variational Bayes

$$\ln p(y|\mathbf{m}^{(\ell)}) = \mathcal{F}\left(q(\theta|\mathbf{m}^{(\ell)})\right) + \mathcal{K}L\left(q(\theta|\mathbf{m}^{(\ell)}) \mid\mid p(\theta|y,\mathbf{m}^{(\ell)})\right)$$

$$q^*(heta | \mathrm{m}^{(\ell)}) = rg\max_{q(heta)} \mathcal{F}\left(q(heta | \mathrm{m}^{(\ell)})
ight)$$

• Mean-field assumption

$$q(\theta|\mathbf{m}^{(\ell)}) = \prod_{i} q_{i}(\theta_{i}|\mathbf{m}^{(\ell)}) \implies q_{i}^{*}(\theta_{i}|\mathbf{m}^{(\ell)}) = \frac{1}{C} \exp\left(\mathbb{E}_{j\neq i} \ln[p(y,\theta)]\right)$$

Laplace assumption

$$p(\theta_i|y) \sim \mathcal{N}(\hat{\theta}_i, \hat{\Sigma}_i), \quad q_i(\theta_i|\mathbf{m}^{(\ell)}) \sim \mathcal{N}(\mu, P) \implies q_i^* \sim \mathcal{N}(\hat{\theta}_i, \hat{\Sigma}_i)$$

3.
$$\mathbf{m}^* = \operatorname{arg\,max}_{\mathbf{m}^{(\ell)}} \mathcal{F}\left(q^*(\hat{\theta} | \mathbf{m}^{(\ell)})\right)$$

Parameters Estimation

Model

Model

• Discretized model

Our model

Our model

Our model

Condition: Rest

$$w_k \sim \mathcal{N}\left(0, \sigma^2 \int_0^{T_R} e^{\mathbf{A} \tau} e^{\mathbf{A} au} d au
ight)$$

Linear Stochastic State-Space Model

$$\mathbf{x}_{k+1} = \begin{bmatrix} e^{\mathcal{A}T_R} & \mathbf{0} \\ I_{n(s-1)} & \mathbf{0} \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} w_k \\ \mathbf{0} \end{bmatrix}$$
$$b_k = \begin{bmatrix} \mathbf{h}^T \otimes I_n \end{bmatrix} \mathbf{x}_k$$

Parameters:

A,
$$\boldsymbol{\sigma}$$
, \boldsymbol{h} , $\boldsymbol{\lambda}$

fMRI signal $y_k = b_k + e_k \quad e_k \sim \mathcal{N}(0, \lambda^2 I_n)$

Statistical Linearization of the hemodynamic response

Statistical Linearization of the hemodynamic response

$$\begin{array}{c} \boldsymbol{\theta}_{\boldsymbol{h}} \sim \mathcal{N}(\bar{\boldsymbol{\theta}}, \bar{\boldsymbol{\Sigma}}_{\boldsymbol{\theta}}) & \text{Empirical prior reported in} \\ & \text{Friston, Harrison, and Penny 2003} \\ \end{array}$$

$$\begin{array}{c} \downarrow \\ \boldsymbol{x}_{t}^{(i)} & \overbrace{\boldsymbol{t}_{t} = -\kappa r_{t} - \gamma(f_{t} - 1) + x_{t}^{(i)}} \\ \vdots \\ \boldsymbol{t}_{t} = r_{t} \\ \boldsymbol{\tau} \dot{\boldsymbol{v}}_{t} = f_{t} - v_{t}^{1/\xi} \\ \boldsymbol{\tau} \dot{\boldsymbol{q}}_{t} = \frac{f_{t}}{\rho} \left[1 - (1 - \rho)^{1/f_{t}} \right] - v_{t}^{1/\xi - 1} q_{t} \\ b_{t}^{(i)} = V_{0} \left[k_{1}(1 - q_{t}) + k_{2} \left(1 - \frac{q_{t}}{v_{t}} \right) + k_{3}(1 - v_{t}) \right] \end{array}$$

$$\begin{array}{c} \approx \\ \boldsymbol{x}_{t}^{(i)} & \stackrel{\boldsymbol{h}}{\longrightarrow} \\ \boldsymbol{h} \sim \mathcal{N}(\bar{\boldsymbol{h}}, \bar{\boldsymbol{\Sigma}}_{\boldsymbol{h}}) \end{array}$$

$$egin{aligned} \hat{\eta} &= rg\max_{\eta} \ p(Y|\eta)p(\eta) \ \eta &= \{m{A},m{\sigma}, \ m{h},m{\lambda}\} \end{aligned}$$

$$\hat{\eta} = \arg \max_{\eta} p(Y|\eta)p(\eta)$$

 $\eta = \{A, \sigma, h, \lambda\}$

$$p(\eta) \propto p(A) p(\sigma) p(h) p(\lambda)$$

Prior

$$egin{aligned} \hat{\eta} &= rg\max_{\eta} \ p(Y|\eta)p(\eta) \ \eta &= \{m{A},m{\sigma}, \ m{h},m{\lambda}\} \end{aligned}$$

$$egin{array}{l} \hat{\eta} = {
m arg\,max}_{\eta} ~~ p(Y|\eta) p(\eta) \ \ \eta = \{ oldsymbol{A}, oldsymbol{\sigma}, ~~ oldsymbol{h}, oldsymbol{\lambda} \} \end{array}$$

$$egin{aligned} \hat{\eta} &= rg\max_{\eta} \ p(Y|\eta)p(\eta) \ \eta &= \{m{A},m{\sigma}, \ m{h},m{\lambda}\} \end{aligned}$$

$$p(\eta) \propto p(A) p(\sigma) p(h) p(\lambda)$$

Prior

MAP Estimator

•
$$p(\text{vec}(A)) \sim \mathcal{N}(\mathbf{0}, \Gamma), \qquad \Gamma := \text{diag}(\gamma_1, ..., \gamma_{n^2}))$$

•
$$p(h) \sim \mathcal{N}(\bar{h}, \bar{\Sigma}_h)$$

• $p(\sigma), p(\lambda)$ uninformative

$$p(Y|\eta) = \int p(\mathbf{X}, Y|\eta) \, \mathrm{d}\mathbf{X}, \qquad \mathbf{X} := [\mathbf{x}^{\mathsf{T}}(0) \cdots \mathbf{x}^{\mathsf{T}}(N)]^{\mathsf{T}}$$

Likelihood

$$egin{aligned} \hat{\eta} &= rg\max_{\eta} \ p(Y|\eta)p(\eta) \ \eta &= \{m{A},m{\sigma}, \ m{h},m{\lambda}\} \end{aligned}$$

$$p(\eta) \propto p(A) p(\sigma) p(h) p(\lambda)$$

Prior

MAP Estimator

• $p(\text{vec}(A)) \sim \mathcal{N}(\mathbf{0}, \Gamma), \qquad \Gamma := \text{diag}(\gamma_1, ..., \gamma_{n^2}))$

•
$$p(h) \sim \mathcal{N}(\bar{h}, \bar{\Sigma}_h)$$

• $p(\sigma), p(\lambda)$ uninformative

Likelihood

$$p(Y|\eta) = \int p(\mathbf{X}, Y|\eta) \, \mathrm{d}\mathbf{X}, \qquad \mathbf{X} := [\mathbf{x}^T(0) \cdots \mathbf{x}^T(N)]^T$$
• Use EM algorithm to maximize $\ln p(Y|\eta) + \ln p(\eta)$

Initialization: Choose $\eta^{(0)}$ and set I = 0

1: repeat

2: E-step: Evaluate $p(\mathbf{X}|Y, \eta^{(l)})$

3: M-step: $\eta^{(l+1)} = \arg \max_{\eta \in \Omega} \mathcal{Q}(\eta, \eta^{(l)}) + \ln p(\eta)$

4:
$$l = l + 1$$

5: until $\|\eta^{(l)} - \eta^{(l-1)}\| / \|\eta^{(l)}\|$ is sufficiently small Outputs: $\eta^{(l)}$

$$\mathcal{Q}(\eta, \eta^{(l)}) = \int p(\mathbf{X}|Y, \eta^{(l)}) \ln p(\mathbf{X}, Y|\eta) \, \mathrm{d}\mathbf{X}$$

Need to apply RTS smoother to evaluate $p(\mathbf{X}|Y,\eta^{(l)})$ and $\mathcal{Q}(\eta,\eta^{(l)})$

Need to apply RTS smoother to evaluate $p(\mathbf{X}|Y, \eta^{(l)})$ and $\mathcal{Q}(\eta, \eta^{(l)})$

Modified EM Algorithm

Inputs: $y_k, k = 1, .., N$

Initialization: Choose $\eta^{(0)}$ and set l = 0

1: repeat

2: E-step: Apply RTS smoother to evaluate
$$p(\mathbf{X}|Y, \eta^{(l)})$$

3: M-step:
$$\eta^{(l+1)} = \arg \max_{\eta \in \Omega} \mathcal{Q}(\eta, \eta^{(l)}) + \ln p(\eta)$$

4:
$$\Gamma^{(l+1)} = \text{Update hyper-parameters } \Gamma \text{ of prior } p(\text{vec}(A))$$

5:
$$I = I + 1$$

6: until
$$||A^{(l)} - A^{(l-1)}||_F / ||A^{(l)}||_F$$
 is sufficiently small
Outputs: $\eta^{(l)}$

Need to apply RTS smoother to evaluate $p(\mathbf{X}|Y, \eta^{(l)})$ and $\mathcal{Q}(\eta, \eta^{(l)})$

Modified EM Algorithm

Inputs: $y_k, k = 1, ..., N$

Initialization: Choose $\eta^{(0)}$ and set I = 0

- 1: repeat
- 2: E-step: Apply RTS smoother to evaluate $p(\mathbf{X}|Y, \eta^{(l)})$
- 3: M-step: $\eta^{(l+1)} = \arg \max_{\eta \in \Omega} \mathcal{Q}(\eta, \eta^{(l)}) + \ln p(\eta)$
- 4: $\Gamma^{(l+1)} = \text{Update hyper-parameters } \Gamma \text{ of prior } p(\text{vec}(A))$
- 5: I = I + 1
- 6: until $||A^{(l)} A^{(l-1)}||_F / ||A^{(l)}||_F$ is sufficiently small Outputs: $\eta^{(l)}$

NonLinear Regression Model $x_{k+1} = e^{AT_R}x_k + w_k, \qquad w_k \sim \mathcal{N}(0, Q)$

Iterative Reweighted Method on Nonlinear model

Iterative Reweighted Method on Nonlinear model

Iterative Reweighted Method on Nonlinear model

Experiment: Data and Performance Metrics

•
$$T_R = 2 \sec \theta$$

Experiment: Data and Performance Metrics

Root Mean Squared Error

$$RMSE(\widehat{A}) = \frac{\|\underline{A} - \underline{\widehat{A}}\|_{F}}{\sqrt{n(n-1)}}$$

<u>A</u> denotes the matrix A with its diagonal set to 0

Experiment: Data and Performance Metrics

Errors in the sparsity pattern

No. false positives + No. false negatives

Experiment: Comparison with Existing Methods

Compare proposed EM algorithm with:

- Spectral DCM (Variational Bayes on frequency-domain data)
- Generalized Filtering (Variational Bayes on time-domain data using generalized coordinates)

Experiment: Comparison with Existing Methods

Compare proposed EM algorithm with:

- Spectral DCM (Variational Bayes on frequency-domain data)
- Generalized Filtering (Variational Bayes on time-domain data using generalized coordinates)

Experiment: Comparison with Existing Methods

		sDCM		GF	
	$ERR(\widehat{A})$	#Chosen	$RMSE(\widehat{A})$	#Chosen	$RMSE(\widehat{A})$
(a)	0	2	0.09	0	0.22
(b)	4	0	0.28	0	0.22
(c)	6	0	0.27	0	0.22
(d)	6	2	0.13	0	0.22
(e)	8	0	0.25	0	0.22
(f)	10	0	0.31	0	0.23
(g)	19	1	0.35	0	0.24
(h)	22	15	0.30	0	0.23
(i)	19	0	0.38	20	0.24
(j)	15	0	0.33	0	0.23
(k)	21	0	0.34	0	0.23
(I)	17	0	0.32	0	0.23

		# MC runs	$RMSE(\widehat{A})$
Our	$ERR(\widehat{A}) \leq 4$	5	0.09
Method	$5 \leq ERR(\widehat{A}) \leq 8$	8	0.10
Witchiou	$9 \leq ERR(\widehat{A}) \leq 11$	5	0.13
	$\textit{ERR}(\widehat{A}) \geq 12$	2	0.44

We propose an algorithm to estimate brain effective connectivity from fMRI data

We propose an algorithm to estimate brain effective connectivity

We propose an algorithm to estimate brain effective connectivity

We propose an algorithm to estimate brain effective connectivity

We propose an algorithm to estimate brain effective connectivity

Thank you

References I

Karl J Friston, Lee Harrison, and Will Penny. "Dynamic causal modelling". In: *Neuroimage* 19.4 (2003), pp. 1273–1302.

Karl Friston et al. "Variational free energy and the Laplace approximation". In: *Neuroimage* 34.1 (2007), pp. 220–234.

Karl J Friston et al. "A DCM for resting state fMRI". In: *Neuroimage* 94 (2014), pp. 396–407.

Stefan Frässle et al. "Regression DCM for fMRI". In: NeuroImage (2017).

Karl J Friston, N Trujillo-Barreto, and Jean Daunizeau. "DEM: a variational treatment of dynamic systems". In: *Neuroimage* 41.3 (2008), pp. 849–885.

Baojuan Li et al. "Generalised filtering and stochastic DCM for fMRI". In: *Neuroimage* 58.2 (2011), pp. 442–457.

David Wipf and Srikantan Nagarajan. "Iterative Reweighted ℓ_1 and ℓ_2 Methods for Finding Sparse Solutions". In: *IEEE Journal of Selected Topics in Signal Processing* 4.2 (2010), pp. 317–329.