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• Supervised machine learning

– Goal: estimating a function f : X → Y
– From random observations (xi, yi) ∈ X × Y, i = 1, . . . , n



Context and motivations

• Supervised machine learning

– Goal: estimating a function f : X → Y
– From random observations (xi, yi) ∈ X × Y, i = 1, . . . , n

• Specificities

– Data may come from anywhere

– From strong to weak prior knowledge

– Computational constraints

– Between theory, algorithms and applications



Context and motivations

• Large-scale machine learning: large p, large n

– p : dimension of each observation (input)

– n : number of observations

• Examples: computer vision, bioinformatics, advertising

– Ideal running-time complexity: O(pn)

– Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

– Mixing statistics and optimization

– Using smoothness to go beyond stochastic gradient descent



Search engines - Advertising



Visual object recognition



Bioinformatics

• Protein: Crucial elements of cell life

• Massive data: 2 millions for humans

• Complex data
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Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function 〈θ,Φ(x)〉 of features Φ(x) ∈ R
p

– Explicit features adapted to inputs (can be learned as well)

– Using Hilbert spaces for non-linear / non-parametric estimation
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• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function 〈θ,Φ(x)〉 of features Φ(x) ∈ R
p

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rp

1

n

n
∑

i=1

log
(

1 + exp(−yi〈θ,Φ(xi)〉)
)

+ µΩ(θ)

(logistic regression)



Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function 〈θ,Φ(x)〉 of features Φ(x) ∈ R
p

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rp

1

n

n
∑

i=1

ℓ
(

yi, 〈θ,Φ(xi)〉
)

+ µΩ(θ)

convex data fitting term + regularizer

• Empirical risk: f̂(θ) = 1
n

∑n
i=1 ℓ(yi, 〈θ,Φ(xi)〉) training cost

• Expected risk: f(θ) = E(x,y)ℓ(y, 〈θ,Φ(x)〉) testing cost

• Two fundamental questions: (1) computing θ̂ and (2) analyzing θ̂



Smoothness and strong convexity
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p → R is L-smooth if and only if it is twice

differentiable and

∀θ ∈ R
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[
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]
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Smoothness and strong convexity

• A function g : R
p → R is L-smooth if and only if it is twice

differentiable and

∀θ ∈ R
p, eigenvalues

[

g′′(θ)
]

6 L

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, 〈θ,Φ(xi)〉)

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)⊗ Φ(xi)

– Bounded data: ‖Φ(x)‖ 6 R ⇒ L = O(R2)
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• A twice differentiable function g : Rp → R is µ-strongly convex if

and only if
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Smoothness and strong convexity

• A twice differentiable function g : Rp → R is µ-strongly convex if

and only if

∀θ ∈ R
p, eigenvalues

[

g′′(θ)
]

> µ

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, 〈θ,Φ(xi)〉)

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)⊗ Φ(xi)

– Data with invertible covariance matrix (low correlation/dimension)

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
p

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−(µ/L)t) convergence rate for strongly convex functions
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Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
p

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−(µ/L)t) convergence rate for strongly convex functions

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

convergence rate

• Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error

2. In machine learning, cost functions are averages

⇒ Stochastic approximation
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• Goal: Minimizing a function f defined on R
p

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
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Stochastic approximation

• Goal: Minimizing a function f defined on R
p

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ R
p

• Machine learning - statistics

– f(θ) = Efn(θ) = E ℓ(yn, 〈θ,Φ(xn)〉) = generalization error

– Loss for a single pair of observations: fn(θ) = ℓ(yn, 〈θ,Φ(xn)〉)
– Expected gradient:

f ′(θ) = Ef ′
n(θ) = E

{

ℓ′(yn, 〈θ,Φ(xn)〉)Φ(xn)
}

• Beyond convex optimization: see, e.g., Benveniste et al. (2012)



Convex stochastic approximation

• Key assumption: smoothness and/or strong convexity

• Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γn f
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n+1

∑n
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α



Convex stochastic approximation

• Key assumption: smoothness and/or strong convexity

• Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γn f
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n+1

∑n
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α

• Running-time = O(np)

– Single pass through the data

– One line of code among many



Convex stochastic approximation

Existing analysis

• Known global minimax rates of convergence for non-smooth

problems (Nemirovski and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2
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smooth strongly convex problems

A single algorithm with global adaptive convergence rate for

smooth problems?



Convex stochastic approximation

Existing analysis

• Known global minimax rates of convergence for non-smooth

problems (Nemirovski and Yudin, 1983; Agarwal et al., 2012)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

• Asymptotic analysis of averaging (Polyak and Juditsky, 1992;

Ruppert, 1988)

– All step sizes γn = Cn−α with α ∈ (1/2, 1) lead to O(n−1) for

smooth strongly convex problems

• A single algorithm for smooth problems with global convergence

rate O(1/n) in all situations?



Least-mean-square algorithm

• Least-squares: f(θ) = 1
2E

[

(yn − 〈Φ(xn), θ〉)2
]

with θ ∈ R
p

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– usually studied without averaging and decreasing step-sizes

– with strong convexity assumption E
[

Φ(xn)⊗Φ(xn)
]

= H < µ · Id



Least-mean-square algorithm

• Least-squares: f(θ) = 1
2E

[

(yn − 〈Φ(xn), θ〉)2
]

with θ ∈ R
p

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– usually studied without averaging and decreasing step-sizes

– with strong convexity assumption E
[

Φ(xn)⊗Φ(xn)
]

= H < µ · Id

• New analysis for averaging and constant step-size γ = 1/(4R2)

– Assume ‖Φ(xn)‖ 6 R and |yn − 〈Φ(xn), θ∗〉| 6 σ almost surely

– No assumption regarding lowest eigenvalues of H

– Main result: Ef(θ̄n)− f(θ∗) 6
4σ2p

n
+

4R2‖θ0 − θ∗‖2
n

• Matches statistical lower bound (Tsybakov, 2003)

– Fewer assumptions than existing bounds for empirical risk min. (



Least-squares - Proof technique

• LMS recursion:

θn − θ∗ =
[

I − γΦ(xn)⊗ Φ(xn)
]

(θn−1 − θ∗) + γ εnΦ(xn)

• Simplified LMS recursion: with H = E
[

Φ(xn)⊗ Φ(xn)
]

θn − θ∗ =
[

I − γH
]

(θn−1 − θ∗) + γ εnΦ(xn)

– Direct proof technique of Polyak and Juditsky (1992), e.g.,

θn − θ∗ =
[

I − γH
]n
(θ0 − θ∗) + γ

n
∑

k=1

[

I − γH
]n−k

εkΦ(xk)

• Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers

of γ



Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

- For least-squares, θ̄γ = θ∗

θ̄γ

θ0

θn
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Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

θ∗
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Markov chain interpretation of constant step sizes

• LMS recursion for fn(θ) =
1
2

(

yn − 〈Φ(xn), θ〉
)2

θn = θn−1 − γ
(

〈Φ(xn), θn−1〉 − yn
)

Φ(xn)

• The sequence (θn)n is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

– θn does not converge to θ∗ but oscillates around it

– oscillations of order
√
γ

• Ergodic theorem:

– Averaged iterates converge to θ̄γ = θ∗ at rate O(1/n)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)
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Isn’t least-squares regression a “regression”?



Isn’t least-squares regression a “regression”?

• Least-squares regression

– Simpler to analyze and understand

– Explicit relationship to bias/variance trade-offs

• Many important loss functions are not quadratic

– Beyond least-squares with online Newton steps

– Complexity of O(p) per iteration with rate O(p/n)

– See Bach and Moulines (2013) for details



Optimal bounds for least-squares?

• Least-squares: cannot beat σ2p/n (Tsybakov, 2003). Really?

– Adaptivity to simpler problems



Finer assumptions (Dieuleveut and Bach, 2016)

• Covariance eigenvalues

– Pessimistic assumption: all eigenvalues λm less than a constant

– Actual decay as λm = o(m−α) with trH1/α =
∑

m

λ1/α
m small

– New result: replace
σ2p

n
by

σ2(γn)1/α trH1/α

n
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Finer assumptions (Dieuleveut and Bach, 2016)

• Covariance eigenvalues

– Pessimistic assumption: all eigenvalues λm less than a constant

– Actual decay as λm = o(m−α) with trH1/α =
∑

m

λ1/α
m small

– New result: replace
σ2p

n
by

σ2(γn)1/α trH1/α

n

• Optimal predictor

– Pessimistic assumption: ‖θ0 − θ∗‖2 finite

– Finer assumption: ‖H1/2−r(θ0 − θ∗)‖2 small

– Replace
‖θ0 − θ∗‖2

γn
by

4‖H1/2−r(θ0 − θ∗)‖2
γ2rn2min{r,1}

– Leads to optimal rates for non-parametric regression
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Achieving optimal bias and variance terms

Bias Variance

Averaged gradient descent

(Bach and Moulines, 2013)
R2‖θ0 − θ∗‖2
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Achieving optimal bias and variance terms

Bias Variance

Averaged gradient descent

(Bach and Moulines, 2013)
R2‖θ0 − θ∗‖2

n

σ2p

n

Accelerated gradient descent

(Nesterov, 1983)
R2‖θ0 − θ∗‖2

n2
σ2p

• Acceleration is notoriously non-robust to noise (d’Aspremont,

2008; Schmidt et al., 2011)

– For non-structured noise, see Lan (2012)
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Achieving optimal bias and variance terms

Bias Variance

Averaged gradient descent

(Bach and Moulines, 2013)
R2‖θ0 − θ∗‖2

n

σ2p

n

Accelerated gradient descent

(Nesterov, 1983)
R2‖θ0 − θ∗‖2

n2
σ2p

“Between” averaging and acceleration

(Flammarion and Bach, 2015)
R2‖θ0 − θ∗‖2

n1+α

σ2p

n1−α

Averaging and acceleration

(Dieuleveut, Flammarion, and Bach, 2016)
R2‖θ0 − θ∗‖2

n2

σ2p

n



Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0



Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫
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Beyond least-squares - Markov chain interpretation

• Recursion θn = θn−1 − γf ′
n(θn−1) also defines a Markov chain

– Stationary distribution πγ such that
∫

f ′(θ)πγ(dθ) = 0

– When f ′ is not linear, f ′(
∫

θπγ(dθ)) 6=
∫

f ′(θ)πγ(dθ) = 0

• θn oscillates around the wrong value θ̄γ 6= θ∗

– moreover, ‖θ∗ − θn‖ = Op(
√
γ)

• Ergodic theorem

– averaged iterates converge to θ̄γ 6= θ∗ at rate O(1/n)

– moreover, ‖θ∗ − θ̄γ‖ = O(γ) (Bach, 2014)

– See precise analysis by Dieuleveut, Durmus, and Bach (2017)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Restoring convergence through online Newton steps

• Known facts

1. Averaged SGD with γn ∝ n−1/2 leads to robust rate O(n−1/2)

for all convex functions

2. Averaged SGD with γn constant leads to robust rate O(n−1)

for all convex quadratic functions

3. Newton’s method squares the error at each iteration

for smooth functions

4. A single step of Newton’s method is equivalent to minimizing the

quadratic Taylor expansion

– Online Newton step

– Rate: O((n−1/2)2 + n−1) = O(n−1)

– Complexity: O(p) per iteration



Restoring convergence through online Newton steps

• Known facts

1. Averaged SGD with γn ∝ n−1/2 leads to robust rate O(n−1/2)

for all convex functions

2. Averaged SGD with γn constant leads to robust rate O(n−1)

for all convex quadratic functions ⇒ O(n−1)

3. Newton’s method squares the error at each iteration

for smooth functions ⇒ O((n−1/2)2)

4. A single step of Newton’s method is equivalent to minimizing the

quadratic Taylor expansion

• Online Newton step

– Rate: O((n−1/2)2 + n−1) = O(n−1)

– Complexity: O(p) per iteration



Restoring convergence through online Newton steps

• The Newton step for f = Efn(θ)
def
= E

[

ℓ(yn, 〈θ,Φ(xn)〉)
]

at θ̃ is

equivalent to minimizing the quadratic approximation

g(θ) = f(θ̃) + 〈f ′(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′(θ̃)(θ − θ̃)〉

= f(θ̃) + 〈Ef ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃,Ef ′′
n(θ̃)(θ − θ̃)〉

= E

[

f(θ̃) + 〈f ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃, f ′′
n(θ̃)(θ − θ̃)〉

]
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ℓ(yn, 〈θ,Φ(xn)〉)
]

at θ̃ is

equivalent to minimizing the quadratic approximation

g(θ) = f(θ̃) + 〈f ′(θ̃), θ − θ̃〉+ 1
2〈θ − θ̃, f ′′(θ̃)(θ − θ̃)〉

= f(θ̃) + 〈Ef ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃,Ef ′′
n(θ̃)(θ − θ̃)〉

= E

[

f(θ̃) + 〈f ′
n(θ̃), θ − θ̃〉+ 1

2〈θ − θ̃, f ′′
n(θ̃)(θ − θ̃)〉

]

• Complexity of least-mean-square recursion for g is O(p)

θn = θn−1 − γ
[

f ′
n(θ̃) + f ′′

n(θ̃)(θn−1 − θ̃)
]

– f ′′
n(θ̃) = ℓ′′(yn, 〈θ̃,Φ(xn)〉)Φ(xn)⊗ Φ(xn) has rank one

– New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity



Choice of support point for online Newton step

• Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain θ̃

(2) Run n/2 iterations of averaged constant step-size LMS

– Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)

– Provable convergence rate of O(p/n) for logistic regression

– Additional assumptions but no strong convexity

• Update at each iteration using the current averaged iterate

– Recursion: θn = θn−1 − γ
[

f ′
n(θ̄n−1) + f ′′

n(θ̄n−1)(θn−1 − θ̄n−1)
]

– No provable convergence rate (yet) but best practical behavior

– Note (dis)similarity with regular SGD: θn = θn−1 − γf ′
n(θn−1)



Simulations - synthetic examples

• Gaussian distributions - p = 20
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Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)
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Conclusions

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection and adaptivity



Conclusions

• Constant-step-size averaged stochastic gradient descent

– Reaches convergence rate O(1/n) in all regimes

– Improves on the O(1/
√
n) lower-bound of non-smooth problems

– Efficient online Newton step for non-quadratic problems

– Robustness to step-size selection and adaptivity

• Extensions and future work

– Going beyond a single pass (Le Roux, Schmidt, and Bach, 2012;

Defazio, Bach, and Lacoste-Julien, 2014)

– Non-differentiable regularization (Flammarion and Bach, 2017)

– Kernels and nonparametric estimation (Dieuleveut and Bach, 2016)

– Parallelization

– Non-convex problems
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