Beyond stochastic gradient descent for large-scale machine learning

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with Aymeric Dieuleveut, Nicolas Flammarion, Eric Moulines - ERNSI Workshop, 2017

• Supervised machine learning

- **Goal**: estimating a function $f : \mathcal{X} \to \mathcal{Y}$
- From random observations $(x_i, y_i) \in \mathcal{X} imes \mathcal{Y}$, $i = 1, \dots, n$

• Supervised machine learning

- **Goal**: estimating a function $f : \mathcal{X} \to \mathcal{Y}$
- From random observations $(x_i, y_i) \in \mathcal{X} imes \mathcal{Y}$, $i = 1, \dots, n$

Specificities

- Data may come from anywhere
- From strong to weak prior knowledge
- Computational constraints
- Between theory, algorithms and applications

- Large-scale machine learning: large p, large n
 - -p: dimension of each observation (input)
 - -n: number of observations
- Examples: computer vision, bioinformatics, advertising

Search engines - Advertising

Apps M GM	AIL 🔀 Intranet 🤄 Francis Bach - INRIA	III Le Monde	СР	Scholar	Equipe	19 Agenda	Liberation	🗋 РАМІ 🚽
	WEB IMAGES VIDEOS MAPS	NEWS	MOR	E				Sign in
bing	tour de france				Q			
	121 000 000 RESULTS Narrow by language - Narrow by region -							
	Tour de France 2014 Translate this page				Related searches			
	www.letour.fr 🔻				Tracé Tour de France 2014			
	tour de picardie 2014 ag2r la mondiale; a racing team; bretagne - seche environnemen	tour de picardie 2014 ag2r la mondiale; astana pro team; bigmat - auber 93; bmc				Regarder Tour de France Direct		
	Parcours	Tour de	France	2011		Class	sement Général	Tour de France
	Du samedi 29 iuin au dimanche 21	arcours rour de France 2011 samedi 29 juin au dimanche 21 Tour de France 2014 - Site officiel de la célèbre course cycliste Le Tour			de la	Itinéraire Tour de France		
	juillet 2013, le 100 e Tour de				Franc	ce 2		
	Classements	Étape 14	4			Tour	de France Cycli	sme
	Classements - Tour de France 2013. Tour de France 2013 - Site officiel	Étape 14 - Lyon - Tour	tape 14 - Saint-Pourçain-sur-Sioule > .yon - Tour de			Tour de France Online		
	Nice 2013	Étape 18	8					
	Tour de France 2012 - Site officiel de la célèbre course cycliste Le Tour	Étape 18 - France 201	Gap > Alp 3	e-d'Huez - To	our de			
	Tour de France 2013 Translate this page							
	www.letour.fr/le-tour/2013/fr -							
	Contient les itinéraires, coureurs, équipes et	les infos des	Tours pa	s <mark>sés.</mark>	ince.			
	Tour de France (cyclisme) — Wikipédia Translate this page							
	fr.wikipedia.org/wiki/Tour_de_France_(cyclisme) ▼							
	Desgrange et Géo Lefèvre, chef de la rubriqu Histoire · Médiatisation du · Équipes et pa	le cyclisme d	u journal L	-'Auto.	GIIII			

Visual object recognition

Bioinformatics

- Protein: Crucial elements of cell life
- Massive data: 2 millions for humans
- Complex data

- Large-scale machine learning: large *p*, large *n*
 - -p: dimension of each observation (input)
 - -n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(pn)

- Large-scale machine learning: large *p*, large *n*
 - -p: dimension of each observation (input)
 - -n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(pn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951)
 - Mixing statistics and optimization

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
 - Explicit features adapted to inputs (can be learned as well)
 - Using Hilbert spaces for non-linear / non-parametric estimation

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \theta, \Phi(x_i) \rangle) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{2n} \sum_{i=1}^n \left(y_i - \langle \theta, \Phi(x_i) \rangle \right)^2 \quad + \quad \mu \Omega(\theta)$$

(least-squares regression)

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp(-y_i \langle \theta, \Phi(x_i) \rangle) \right) + \mu \Omega(\theta)$$
(logistic regression)

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \langle \theta, \Phi(x_i) \rangle) + \mu \Omega(\theta)$$

$$\text{convex data fitting term + regularizer}$$

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \langle \theta, \Phi(x) \rangle)$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is *L*-smooth if and only if it is twice differentiable and

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is *L*-smooth if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^p, \text{ eigenvalues}[g''(\theta)] \leq L$$

• Machine learning

- with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \otimes \Phi(x_i)$
- Bounded data: $\|\Phi(x)\| \leq R \Rightarrow L = O(R^2)$

• A twice differentiable function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

• A twice differentiable function $g:\mathbb{R}^p\to\mathbb{R}$ is $\mu\text{-strongly convex}$ if and only if

$$orall heta \in \mathbb{R}^p, \; \mathsf{eigenvalues} ig[g^{\prime\prime}(heta) ig] \geqslant \mu$$

• A twice differentiable function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^p, \text{ eigenvalues}[g''(\theta)] \ge \mu$$

• Machine learning

- with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \otimes \Phi(x_i)$
- Data with invertible covariance matrix (low correlation/dimension)

• A twice differentiable function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^p, \text{ eigenvalues}[g''(\theta)] \ge \mu$$

- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle \theta, \Phi(x_i) \rangle)$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \otimes \Phi(x_i)$
 - Data with invertible covariance matrix (low correlation/dimension)
- Adding regularization by $\frac{\mu}{2} \|\theta\|^2$
 - creates additional bias unless μ is small

Iterative methods for minimizing smooth functions

- Assumption: g convex and smooth on \mathbb{R}^p
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions - $O(e^{-(\mu/L)t})$ convergence rate for strongly convex functions

Iterative methods for minimizing smooth functions

- Assumption: g convex and smooth on \mathbb{R}^p
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

– O(1/t) convergence rate for convex functions – $O(e^{-(\mu/L)t})$ convergence rate for strongly convex functions

- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $O(e^{-\rho 2^t})$ convergence rate

Iterative methods for minimizing smooth functions

- Assumption: g convex and smooth on \mathbb{R}^p
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

– O(1/t) convergence rate for convex functions – $O(e^{-(\mu/L)t})$ convergence rate for strongly convex functions

- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $O(e^{-\rho 2^t})$ convergence rate

• Key insights from Bottou and Bousquet (2008)

In machine learning, no need to optimize below statistical error
 In machine learning, cost functions are averages

 \Rightarrow Stochastic approximation

Stochastic approximation

- Goal: Minimizing a function f defined on \mathbb{R}^p
 - given only unbiased estimates $f'_n(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathbb{R}^p$

Stochastic approximation

- **Goal**: Minimizing a function f defined on \mathbb{R}^p
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n\in\mathbb{R}^p$
- Machine learning statistics
 - $f(\theta) = \mathbb{E}f_n(\theta) = \mathbb{E}\ell(y_n, \langle \theta, \Phi(x_n) \rangle) =$ generalization error
 - Loss for a single pair of observations: $f_n(\theta) = \ell(y_n, \langle \theta, \Phi(x_n) \rangle)$
 - Expected gradient:

$$f'(\theta) = \mathbb{E}f'_n(\theta) = \mathbb{E}\left\{\ell'(y_n, \langle \theta, \Phi(x_n) \rangle) \Phi(x_n)\right\}$$

• Beyond convex optimization: see, e.g., Benveniste et al. (2012)

Convex stochastic approximation

- **Key assumption**: smoothness and/or strong convexity
- Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n+1} \sum_{k=0}^n \theta_k$
- Which learning rate sequence γ_n ? Classical setting:

$$\gamma_n = C n^{-\alpha}$$

Convex stochastic approximation

- **Key assumption**: smoothness and/or strong convexity
- **Key algorithm:** stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n+1} \sum_{k=0}^n \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $|\gamma_n = Cn^{-\alpha}|$

- Running-time = O(np)
 - Single pass through the data
 - One line of code among many

Convex stochastic approximation Existing analysis

- Known global minimax rates of convergence for non-smooth problems (Nemirovski and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$

Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$

- Non-strongly convex: $O(n^{-1/2})$

Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$

Convex stochastic approximation Existing analysis

- Known global minimax rates of convergence for non-smooth problems (Nemirovski and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$

Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$

- Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992; Ruppert, 1988)
 - All step sizes $\gamma_n = Cn^{-\alpha}$ with $\alpha \in (1/2, 1)$ lead to $O(n^{-1})$ for smooth strongly convex problems

Convex stochastic approximation Existing analysis

- Known global minimax rates of convergence for non-smooth problems (Nemirovski and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$

Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$

- Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992; Ruppert, 1988)
 - All step sizes $\gamma_n = Cn^{-\alpha}$ with $\alpha \in (1/2, 1)$ lead to $O(n^{-1})$ for smooth strongly convex problems
- A single algorithm for smooth problems with global convergence rate O(1/n) in all situations?

Least-mean-square algorithm

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}[(y_n \langle \Phi(x_n), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^p$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}[\Phi(x_n) \otimes \Phi(x_n)] = H \succcurlyeq \mu \cdot \mathrm{Id}$

Least-mean-square algorithm

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}[(y_n \langle \Phi(x_n), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^p$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}\left[\Phi(x_n) \otimes \Phi(x_n)\right] = H \succcurlyeq \mu \cdot \mathrm{Id}$
- \bullet New analysis for averaging and constant step-size $\gamma = 1/(4R^2)$
 - Assume $\|\Phi(x_n)\| \leq R$ and $|y_n \langle \Phi(x_n), \theta_* \rangle| \leq \sigma$ almost surely

– No assumption regarding lowest eigenvalues of H

- Main result:
$$\mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leq \frac{4\sigma^2 p}{n} + \frac{4R^2 \|\theta_0 - \theta_*\|^2}{n}$$

- Matches statistical lower bound (Tsybakov, 2003)
 - Fewer assumptions than existing bounds for empirical risk min.

Least-squares - Proof technique

• LMS recursion:

$$\theta_n - \theta_* = \left[I - \gamma \Phi(x_n) \otimes \Phi(x_n)\right] (\theta_{n-1} - \theta_*) + \gamma \varepsilon_n \Phi(x_n)$$

• Simplified LMS recursion: with $H = \mathbb{E} \big[\Phi(x_n) \otimes \Phi(x_n) \big]$

$$\theta_n - \theta_* = \left[I - \gamma \mathbf{H}\right](\theta_{n-1} - \theta_*) + \gamma \varepsilon_n \Phi(x_n)$$

- Direct proof technique of Polyak and Juditsky (1992), e.g.,

$$\theta_n - \theta_* = \left[I - \gamma \mathbf{H}\right]^n (\theta_0 - \theta_*) + \gamma \sum_{k=1}^n \left[I - \gamma \mathbf{H}\right]^{n-k} \varepsilon_k \Phi(x_k)$$

- Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers of γ

• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma \big(\langle \Phi(x_n), \theta_{n-1} \rangle - y_n \big) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$

• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma \big(\langle \Phi(x_n), \theta_{n-1} \rangle - y_n \big) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma} (\mathrm{d}\theta)$
- For least-squares, $\bar{\theta}_{\gamma} = \theta_*$

• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma \big(\langle \Phi(x_n), \theta_{n-1} \rangle - y_n \big) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- For least-squares, $\bar{\theta}_{\gamma} = \theta_{*}$

• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma \big(\langle \Phi(x_n), \theta_{n-1} \rangle - y_n \big) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- For least-squares, $\bar{\theta}_{\gamma} = \theta_{*}$
 - θ_n does not converge to θ_* but oscillates around it
 - oscillations of order $\sqrt{\gamma}$

• Ergodic theorem:

– Averaged iterates converge to $ar{ heta}_\gamma= heta_*$ at rate O(1/n)

Simulations - synthetic examples

• Gaussian distributions - p=20

Simulations - benchmarks

• alpha (p = 500, $n = 500\ 000$), news ($p = 1\ 300\ 000$, $n = 20\ 000$)

Isn't least-squares regression a "regression"?

Isn't least-squares regression a "regression"?

• Least-squares regression

- Simpler to analyze and understand
- Explicit relationship to bias/variance trade-offs
- Many important loss functions are not quadratic
 - Beyond least-squares with online Newton steps
 - Complexity of ${\cal O}(p)$ per iteration with rate ${\cal O}(p/n)$
 - See Bach and Moulines (2013) for details

Optimal bounds for least-squares?

- Least-squares: cannot beat $\sigma^2 p/n$ (Tsybakov, 2003). Really?
 - Adaptivity to simpler problems

• Covariance eigenvalues

- Pessimistic assumption: all eigenvalues λ_m less than a constant
- Actual decay as $\lambda_m = o(m^{-\alpha})$ with $\operatorname{tr} H^{1/\alpha} = \sum \lambda_m^{1/\alpha}$ small

m

 $\left(\begin{array}{c} 1 \\ 1 \\ 2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 5 \\ 10 \\ 10 \end{array} \right)$

• Covariance eigenvalues

– Pessimistic assumption: all eigenvalues λ_m less than a constant

m

 $H^{1/\alpha}$

– Actual decay as
$$\lambda_m = o(m^{-lpha})$$
 with ${
m tr}\, H^{1/lpha} = \sum \lambda_m^{1/lpha}$ smal

- New result: replace
$$rac{\sigma^2 p}{n}$$
 by $rac{\sigma^2 (\gamma n)^{1/lpha} \operatorname{tr}}{n}$

• Covariance eigenvalues

– Pessimistic assumption: all eigenvalues λ_m less than a constant

m

– Actual decay as
$$\lambda_m = o(m^{-lpha})$$
 with ${
m tr}\, H^{1/lpha} = \sum \lambda_m^{1/lpha}$ small

– New result: replace
$$\frac{\sigma^2 p}{n}$$
 by $\frac{\sigma^2 (\gamma n)^{1/\alpha} \operatorname{tr} H^{1/\alpha}}{n}$

• Optimal predictor

- Pessimistic assumption: $\|\theta_0 \theta_*\|^2$ finite
- Finer assumption: $\|H^{1/2-r}(\theta_0 \theta_*)\|_2$ small - Replace $\frac{\|\theta_0 - \theta_*\|^2}{\gamma n}$ by $\frac{4\|H^{1/2-r}(\theta_0 - \theta_*)\|_2}{\gamma^{2r}n^{2\min\{r,1\}}}$

• Covariance eigenvalues

– Pessimistic assumption: all eigenvalues λ_m less than a constant

m

– Actual decay as
$$\lambda_m = o(m^{-lpha})$$
 with ${
m tr}\, H^{1/lpha} = \sum \lambda_m^{1/lpha}$ small

- New result: replace
$$\frac{\sigma^2 p}{n}$$
 by $\frac{\sigma^2 (\gamma n)^{1/\alpha} \operatorname{tr} H^{1/\alpha}}{n}$

• Optimal predictor

- Pessimistic assumption: $\|\theta_0 \theta_*\|^2$ finite
- Finer assumption: $||H^{1/2-r}(\theta_0 \theta_*)||_2$ small - Replace $\frac{||\theta_0 - \theta_*||^2}{\gamma n}$ by $\frac{4||H^{1/2-r}(\theta_0 - \theta_*)||_2}{\gamma^{2r}n^{2\min\{r,1\}}}$
- Leads to optimal rates for non-parametric regression

	Bias	Variance
Averaged gradient descent		
(Bach and Moulines, 2013)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n}$	$\frac{\sigma^2 p}{n}$

	Bias	Variance
Averaged gradient descent		
(Bach and Moulines, 2013)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n}$	$rac{\sigma^2 p}{n}$
Accelerated gradient descent		
(Nesterov, 1983)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n^2}$	$\sigma^2 p$

- Acceleration is notoriously non-robust to noise (d'Aspremont, 2008; Schmidt et al., 2011)
 - For non-structured noise, see Lan (2012)

	Bias	Variance
Averaged gradient descent		
(Bach and Moulines, 2013)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n}$	$\frac{\sigma^2 p}{n}$
Accelerated gradient descent		
(Nesterov, 1983)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n^2}$	$\sigma^2 p$
"Between" averaging and acceleration		
(Flammarion and Bach, 2015)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n^{1+\alpha}}$	$\frac{\sigma^2 p}{n^{1-\alpha}}$

	Bias	Variance
Averaged gradient descent		
(Bach and Moulines, 2013)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n}$	$\frac{\sigma^2 p}{n}$
Accelerated gradient descent		
(Nesterov, 1983)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n^2}$	$\sigma^2 p$
"Between" averaging and acceleration		
(Flammarion and Bach, 2015)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n^{1+\alpha}}$	$\frac{\sigma^2 p}{n^{1-\alpha}}$
Averaging and acceleration		
(Dieuleveut, Flammarion, and Bach, 2016)	$\frac{R^2 \ \theta_0 - \theta_*\ ^2}{n^2}$	$\frac{\sigma^2 p}{n}$

Beyond least-squares - Markov chain interpretation

- Recursion $\theta_n = \theta_{n-1} \gamma f'_n(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(\mathrm{d}\theta)) \neq \int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$

Beyond least-squares - Markov chain interpretation

- Recursion $\theta_n = \theta_{n-1} \gamma f'_n(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(\mathrm{d}\theta)) \neq \int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$
- θ_n oscillates around the wrong value $\bar{\theta}_{\gamma} \neq \theta_*$

Beyond least-squares - Markov chain interpretation

- Recursion $\theta_n = \theta_{n-1} \gamma f'_n(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(\mathrm{d}\theta)) \neq \int f'(\theta) \pi_{\gamma}(\mathrm{d}\theta) = 0$
- θ_n oscillates around the wrong value $\bar{\theta}_{\gamma} \neq \theta_*$

- moreover,
$$\|\theta_* - \theta_n\| = O_p(\sqrt{\gamma})$$

• Ergodic theorem

- averaged iterates converge to $\bar{\theta}_{\gamma} \neq \theta_*$ at rate O(1/n)
- moreover, $\|\theta_* \overline{\theta}_{\gamma}\| = O(\gamma)$ (Bach, 2014)
- See precise analysis by Dieuleveut, Durmus, and Bach (2017)

Simulations - synthetic examples

• Gaussian distributions - p=20

• Known facts

- 1. Averaged SGD with $\gamma_n \propto n^{-1/2}$ leads to *robust* rate $O(n^{-1/2})$ for all convex functions
- 2. Averaged SGD with γ_n constant leads to *robust* rate $O(n^{-1})$ for all convex *quadratic* functions
- 3. Newton's method squares the error at each iteration for smooth functions
- 4. A single step of Newton's method is equivalent to minimizing the quadratic Taylor expansion

• Known facts

- 1. Averaged SGD with $\gamma_n \propto n^{-1/2}$ leads to *robust* rate $O(n^{-1/2})$ for all convex functions
- 2. Averaged SGD with γ_n constant leads to *robust* rate $O(n^{-1})$ for all convex *quadratic* functions $\Rightarrow O(n^{-1})$
- 3. Newton's method squares the error at each iteration for smooth functions $\Rightarrow O((n^{-1/2})^2)$
- 4. A single step of Newton's method is equivalent to minimizing the quadratic Taylor expansion
- Online Newton step
 - Rate: $O((n^{-1/2})^2 + n^{-1}) = O(n^{-1})$
 - Complexity: O(p) per iteration

• The Newton step for $f = \mathbb{E}f_n(\theta) \stackrel{\text{def}}{=} \mathbb{E}[\ell(y_n, \langle \theta, \Phi(x_n) \rangle)]$ at $\tilde{\theta}$ is equivalent to minimizing the quadratic approximation

$$g(\theta) = f(\tilde{\theta}) + \langle f'(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= f(\tilde{\theta}) + \langle \mathbb{E}f'_{n}(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, \mathbb{E}f''_{n}(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= \mathbb{E}\Big[f(\tilde{\theta}) + \langle f'_{n}(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''_{n}(\tilde{\theta})(\theta - \tilde{\theta}) \rangle\Big]$$

• The Newton step for $f = \mathbb{E}f_n(\theta) \stackrel{\text{def}}{=} \mathbb{E}[\ell(y_n, \langle \theta, \Phi(x_n) \rangle)]$ at $\tilde{\theta}$ is equivalent to minimizing the quadratic approximation

$$g(\theta) = f(\tilde{\theta}) + \langle f'(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= f(\tilde{\theta}) + \langle \mathbb{E}f'_{n}(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, \mathbb{E}f''_{n}(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= \mathbb{E}\Big[f(\tilde{\theta}) + \langle f'_{n}(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''_{n}(\tilde{\theta})(\theta - \tilde{\theta}) \rangle\Big]$$

• Complexity of least-mean-square recursion for g is O(p)

$$\theta_n = \theta_{n-1} - \gamma \left[f'_n(\tilde{\theta}) + f''_n(\tilde{\theta})(\theta_{n-1} - \tilde{\theta}) \right]$$

 $-f_n''(\tilde{\theta}) = \ell''(y_n, \langle \tilde{\theta}, \Phi(x_n) \rangle) \Phi(x_n) \otimes \Phi(x_n)$ has rank one

- New online Newton step without computing/inverting Hessians

Choice of support point for online Newton step

• Two-stage procedure

- (1) Run n/2 iterations of averaged SGD to obtain $ilde{ heta}$
- (2) Run n/2 iterations of averaged constant step-size LMS
 - Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
 - Provable convergence rate of O(p/n) for logistic regression
 - Additional assumptions but no strong convexity

Choice of support point for online Newton step

• Two-stage procedure

- (1) Run n/2 iterations of averaged SGD to obtain $\tilde{ heta}$
- (2) Run n/2 iterations of averaged constant step-size LMS
 - Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
 - Provable convergence rate of O(p/n) for logistic regression
 - Additional assumptions but no strong convexity

• Update at each iteration using the current averaged iterate

- Recursion: $\theta_n = \theta_{n-1} \gamma \left[f'_n(\bar{\theta}_{n-1}) + f''_n(\bar{\theta}_{n-1})(\theta_{n-1} \bar{\theta}_{n-1}) \right]$
- No provable convergence rate (yet) but best practical behavior
- Note (dis)similarity with regular SGD: $\theta_n = \theta_{n-1} \gamma f'_n(\theta_{n-1})$

Simulations - synthetic examples

• Gaussian distributions - p=20

Simulations - benchmarks

Conclusions

- Constant-step-size averaged stochastic gradient descent
 - Reaches convergence rate ${\cal O}(1/n)$ in all regimes
 - Improves on the $O(1/\sqrt{n})$ lower-bound of non-smooth problems
 - Efficient online Newton step for non-quadratic problems
 - Robustness to step-size selection and adaptivity

Conclusions

• Constant-step-size averaged stochastic gradient descent

- Reaches convergence rate ${\cal O}(1/n)$ in all regimes
- Improves on the $O(1/\sqrt{n})$ lower-bound of non-smooth problems
- Efficient online Newton step for non-quadratic problems
- Robustness to step-size selection and adaptivity

• Extensions and future work

- Going beyond a single pass (Le Roux, Schmidt, and Bach, 2012; Defazio, Bach, and Lacoste-Julien, 2014)
- Non-differentiable regularization (Flammarion and Bach, 2017)
- Kernels and nonparametric estimation (Dieuleveut and Bach, 2016)
- Parallelization
- Non-convex problems

References

- A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. *Information Theory, IEEE Transactions* on, 58(5):3235–3249, 2012.
- R. Aguech, E. Moulines, and P. Priouret. On a perturbation approach for the analysis of stochastic tracking algorithms. *SIAM J. Control and Optimization*, 39(3):872–899, 2000.
- F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. *Journal of Machine Learning Research*, 15(1):595–627, 2014.
- F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). In *Adv. NIPS*, 2013.
- Albert Benveniste, Michel Métivier, and Pierre Priouret. *Adaptive algorithms and stochastic approximations*. Springer Publishing Company, Incorporated, 2012.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.
- A. d'Aspremont. Smooth optimization with approximate gradient. *SIAM J. Optim.*, 19(3):1171–1183, 2008.
- A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in Neural Information Processing Systems* (NIPS), 2014.
- A. Dieuleveut and F. Bach. Non-parametric Stochastic Approximation with Large Step sizes. *Annals of Statistics*, 44(4):1363–1399, 2016.

- A. Dieuleveut, N. Flammarion, and F. Bach. Harder, better, faster, stronger convergence rates for least-squares regression. Technical Report 1602.05419, arXiv, 2016.
- Aymeric Dieuleveut, Alain Durmus, and Francis Bach. Bridging the gap between constant step size stochastic gradient descent and markov chains. Technical report, HAL to appear, 2017.
- N. Flammarion and F. Bach. From averaging to acceleration, there is only a step-size. *arXiv preprint arXiv:1504.01577*, 2015.
- N. Flammarion and F. Bach. Stochastic composite least-squares regression with convergence rate O(1/n). In *Proc. COLT*, 2017.
- G. Lan. An optimal method for stochastic composite optimization. *Math. Program.*, 133(1-2, Ser. A): 365–397, 2012.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. In *Advances in Neural Information Processing Systems (NIPS)*, 2012.
- O. Macchi. Adaptive processing: The least mean squares approach with applications in transmission. Wiley West Sussex, 1995.
- A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley & Sons, 1983.
- Y. Nesterov. A method for solving a convex programming problem with rate of convergence $O(1/k^2)$. Soviet Math. Doklady, 269(3):543–547, 1983.
- B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. *SIAM Journal* on Control and Optimization, 30(4):838–855, 1992.

- H. Robbins and S. Monro. A stochastic approximation method. *Ann. Math. Statistics*, 22:400–407, 1951.
- D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report 781, Cornell University Operations Research and Industrial Engineering, 1988.
- M. Schmidt, N. Le Roux, and F. Bach. Convergence rates for inexact proximal-gradient method. In *Adv. NIPS*, 2011.
- A. B. Tsybakov. Optimal rates of aggregation. In Proc. COLT, 2003.
- A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge Univ. press, 2000.