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Motivation: Identification and control

input
design

experiment identification
method

controller
design

controller
testing

Need to make choices in identification procedure focusing on end goal

E.g., input design can emphasize system properties of interest, while
properties of little or no interest can be hidden

However, to design a good input requires knowing what we don’t
know yet: the true system!

This can be solved by adaptively tuning the input:
§ S.D. Silvey, Optimal Design: An Introduction to the Theory for Parameter Estimation. Chapman

and Hall, 1980
§ L. Pronzato, “Optimal experimental design and some related control problems”. Automatica,

44(2):303–325, 2008
§ L. Gerencsér, H. Hjalmarsson and L. Huang. “Adaptive input design for LTI systems”. IEEE

Transactions on Automatic Control, 62(5):2390–2405, 2017
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Introduction to Multi-Armed Bandits

Popular machine learning framework for adaptive control (but where
the “plant” is static)

Name coined in 1952 by Herbert Robbins, in the context of
Sequential Design of Experiments

Exploration vs exploitation dilemma

First asymptotically optimal solution proposed in 1985 by T.L. Lai
and H. Robbins
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Introduction to Multi-Armed Bandits (cont.)

Basic setup:

There are K arms (slot machines) to choose from

One can play one arm in each round

Each arm j gives a reward Xj,t P t0, 1u (t: round)
(Obs only the reward of the selected arm j is revealed)

Problem: which machine should one play in each round?

Performance of a strategy measured in terms of expected cumulative
regret:

RpTq “
T
ÿ

i“1

pµ˚ ´ Etµapiquq

where: T: number of rounds
µ˚ “ maxi µi: best reward
apiq: arm chosen at round i
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Introduction to Multi-Armed Bandits (cont.)

Different formulations:

Stochastic: rewards sampled from an unknown distribution
(independent between rounds)
Example: Xj,t: i.i.d. Bernoulli variables with unknown mean µj

Adversarial: rewards chosen by an adversary
§ Oblivious adversary:

Xj,t chosen a priori (at round 0)

§ Adaptive adversary:
Xj,t chosen based on history of selected arms and rewards so far

Markovian: rewards are Markov processes (evolving only when the
respective arm is chosen)

§ Large literature from the 70’s based on Gittins indices

We will focus mostly on stochastic MABs

(for applications of adversarial MABs to identification, check

G. Rallo et. al. “Data-driven H8-norm estimation via expert advice”. CDC’17.)
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Introduction to Multi-Armed Bandits (cont.)

Applications:

Clinical trials

Ad placement on webpages

Recommender systems

Computer game-playing
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Lower bounds and optimal algorithms

The performance of a strategy depends on the true reward
distribution of the arms
To obtain reasonable problem-dependent lower bounds on the
achievable performance, one needs to restrict the class of strategies

Consider a Bernoulli MAB:

Definition (Uniformly good strategy)
A strategy is called uniformly good / efficient if, for any mean reward
distribution pµ1, . . . , µKq, the number of times Tjptq that any suboptimal
arm j (µj ‰ µ˚) is chosen up to round t satisfies

EtTjptqu “ optαq, for all α ą 0

Note This definition should be suitably changed for other types of MABs
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Lower bounds and optimal algorithms (cont.)

Theorem (Lower bound (Lai&Robbins, 1985))
For any uniformly good strategy and suboptimal arm j,

lim inf
tÑ8

Tjptq
log t

ě
1

Ipµj, µ˚q
w. p. 1,

where
Ipx, yq “ x log

ˆ

x
y

˙

` p1´ xq log
ˆ

1´ x
1´ y

˙

is the KL divergence between two Bernoulli distributions with means x
and y. Therefore,

lim inf
tÑ8

Rptq
log t

ě

K
ÿ

j“1

µ˚ ´ µj

Ipµj, µ˚q

Idea of proof Transform problem into hypothesis testing: a unif. good
strategy should detect quickly the best arm, but for that it needs to collect
enough samples of every suboptimal arm. Stein-Chernoff ’s Lemma
provides a lower bound for Tjptq to achieve consistent detection
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Lower bounds and optimal algorithms (cont.)

Two large families of asymptotically optimal algorithms:

Upper confidence bound (UCB)

Thompson sampling
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Lower bounds and optimal algorithms (cont.)
UCB algorithm:

At each round t:
construct a confidence interval
around µj for each arm j, of
significance level αt

choose arm whose upper
confidence bound is the largest
(Optimism in the face of
uncertainty)

J. Neural Eng. 10 (2013) 016012 J Fruitet et al

tasks by mixing the features of one of the real tasks (the feet)
with different proportions of the features extracted during the
idle periods.

2.5. Modeling the problem

Let K denote the number of different images to be presented
to the subject during the learning stage (K is thus the number
of imaginary tasks) and N is the total number of images
(the budget). Our goal is to find a selection strategy (i.e.
that chooses at each time step t ∈ {1, . . . , N} an image
kt ∈ {1, . . . , K} to present) which allows us to select in fine
the most discriminative task (i.e. with the highest classification
rate in generalization). Note that, in order to learn an efficient
classifier, we need as much training data as possible, so our
selection strategy should rapidly select the most promising
images in order to obtain more samples from these rather than
from the others.

This issue is relatively close to the stochastic bandit
problem [11, 15]. The classical stochastic bandit problem
is defined by a set of K actions (pulling different arms of
bandit machines). With each action a reward distribution is
associated, which is initially unknown from the learner. At
time t ∈ {1, . . . , N}, if we choose an action kt ∈ {1, . . . , K},
we receive a reward sample drawn independently from the
distribution of the corresponding action kt . The goal of the
stochastic bandit algorithm is to find a selection strategy which
maximizes the sum of obtained rewards.

We model the K different images as the K possible actions
(or arms), and we define the reward as the detection rate of
the corresponding imaginary motor task, against the idle state.
In the bandit problem, pulling a bandit arm directly gives a
stochastic reward which is used to estimate the distribution
of this arm. In our case, when we display a new image,
we obtain a new data sample for the selected motor task,
which provides an additional data sample to train or test
the corresponding classifier and thus obtain a more accurate
performance estimation. The main difference is that for the
stochastic bandit problem, the goal is to maximize the sum
of obtained rewards, whereas the present goal is to maximize
the performance of the classifier. However, the strategies are
similar: since the distributions are initially unknown, one
should first explore all the tasks (exploration phase) but then
rapidly select the best one (exploitation phase). This is called
the exploration–exploitation trade-off. The next paragraph
presents an algorithm to optimize this trade-off.

2.6. The UCB-classif algorithm

The image selection strategy is designed by using a variant of
the UCB algorithm [15], which builds a high probability UCB
on the reward value of each task, and selects at each time step
the action corresponding to the reward with highest bound.

The upper bound Bk,t (of action k at time t) is defined in the
stochastic bandit problem as the sum of the empirical reward
r̂k,t and a confidence term which depends on the number of
times Tk,t action k has been chosen up to time t:

Bk,t = r̂k,t +
√

a log N

Tk,t−1
, (1)

Arm 1   Arm 2 Arm 1   Arm 2 Arm 1   Arm 2

t = 1 t = 2 t = 3

Figure 4. This figure represents three snapshots, at times t = 1, 2
and 3, of a bandit with two arms. Although arm 1 is the best arm
(r∗

1 > r∗
2 , represented by the red stars), at time t = 1, since

B1,t < B2,t , arm 2 is selected. Pulling arm 2 gives a better estimate
r̂2,2 of r∗

2 and reduces the confidence interval. At times t = 2 and
t = 3, B1,t will be greater than B2,t , so arm 1 will be selected.

Table 1. Pseudo-code of the UCB-classif algorithm.

The UCB-Classif Algorithm
Parameters: a, N, q
Present each image q times (thus set Tk,qK = q).
for t = qK + 1, . . . , N do

Evaluate by a q-split cross-validation the performance r̂k,t of each
image.

Compute the UCB: Bk,t = r̂k,t +
√

a log N
Tk,t−1

for each image

1 � k � K.
Present image: kt = arg maxk∈{1,...,K} Bk,t .
Update T : Tkt ,t = Tkt ,t−1 + 1 and ∀ k �= kt , Tk,t = Tk,t−1

end for

where a > 0 is a constant. The upper bound in formula (1)
represents a compromise between the empirical reward (first
term) and its uncertainty, which decreases with time (second
term) (see figure 4 for an illustration).

We adapt the idea of the UCB to the adaptive classification
problem and call this algorithm UCB-classif (see the pseudo-
code in table 1). The algorithm builds the Bk,t -values (1), where
r̂k,t represents an estimation of the classification rate, by a
q-fold cross-validation. The cross-validation uses a linear
SVM classifier based on the Tk,t data samples obtained (at
time t) from movement k. Writing r∗

k the classification rate for
the optimal linear SVM classifier (which would be obtained by
using a infinite number of samples), we have the property that
Bk,t is a high probability upper bound on r∗

k : the probability
p(Bk,t < r∗

k ) decreases to zero polynomially fast with N (see
the proof in appendix A.1). The constant a is a measure
of complexity (VC-dimension) of the class of linear SVM
classifiers.

The choice of the initial number of task presentations q
should be made with caution. If q is very small (q < 5), the
algorithm may not give a fair chance to all the tasks. This can
result in the elimination of the best task (although statistically
it does not happen often). Selecting a value of q between 8 and
10 circumvents this problem.

4

Significance level αt should be carefully tuned so that αt Ñ 1, to obtain an
asymptotically optimal strategy. The resulting upper bounds are

bjptq “ µ̂jptq `

d

2 logptq
Tjptq

, µ̂jptq : average reward of arm j

Tjptq : # times arm j has been played up to round t

Similar to the Bet on the Best (BoB) principle of S. Bittanti and M.C.
Campi (Comm. Inf. & Syst., 6(4):299–320, 2006)
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Lower bounds and optimal algorithms (cont.)

For Bernoulli rewards, UCB algorithm gives logarithmic regret, but its
regret does not exactly match the lower bound

A variant, called KL-UCB, does match the lower bound; the upper bound
used is

bjptq “ maxtq ď 1 : Tjptq Ipµ̂jptq, qq ď f ptqu

where f ptq “ logptq ` 3 logplogptqq is the confidence level

Interpretation For optimal performance, an algorithm has to sample
each suboptimal arm as many times as given by the lower bound

bjptq keeps track of how far from this quota arm j has been sampled

Term 3 logplogptqq accounts for uncertainty on µ̂j and optimal arm
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Lower bounds and optimal algorithms (cont.)

Thompson sampling: (Thompson, 1933)

Much older than UCB, conceived for adaptive clinical trials
Bayesian origin: Assume a uniform prior on µj for every j, and update
the posterior pµj based on samples up to round t
At round t, sample µ̂j from posterior pµj , and pick arm for which µ̂j is
largest

UCBs versus Bayesian algorithms

Figure: Confidence intervals on the means of the arms after t rounds

Figure: Posterior distribution of the means of the arms after t rounds

) How do we exploit the posterior in a Bayesian bandit algorithm?

20/46 01.10.2014 Emilie Kaufmann Algorithmes de bandit bayésiens et fréquentistes

Empirically shown that TS has better finite sample mean
performance than UCB algorithms, but its variance can be higher
Kaufmann, Korda & Munos (ALT, 2012) showed that Thompson
Sampling is asymptotically optimal
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Application to H8-norm estimation

Applications of MAB to control problems are very sparse. Some examples:
P.R. Kumar. “An adaptive controller inspired by recent results on learning
from experts”. In K.J. Åström, G.C. Goodwin & P.R. Kumar, Adaptive Control,
Filtering, and Signal Processing, Springer, 1995

M. Raginsky, A. Rakhlin, and S. Yüksel. “Online convex programming and
regularization in adaptive control”. CDC, 2010

Our goal: apply MAB theory to problems of iterative identification
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Application to H8-norm estimation (cont.)

Setup

Gpqq

eτ

yτuτ +

Work with data batches, of length N, sufficiently spaced in time

At each iteration τ , an input batch uτ “ pu1, . . . ,uNq is designed and
applied to the system

The output of the system, yτ “ py1, . . . , yNq, is collected

Goal Determine the H8 norm of the system, as accurately as possible

Why H8-norm is important for bounding model error (needed for
robust control, etc.)
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Application to H8-norm estimation (cont.)

Main Idea:

Design uτ in frequency domain, considering each freq. 2πk{N as an arm!

This is a standard MAB problem, except that:
More than one arm can be pulled at once (in fact, we can choose a
distribution over the arms!)
The outcomes are complex-valued Gaussian distributed (variance
inversely proportional to applied power)
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Application to H8-norm estimation (cont.)

Derived a lower bound for the problem, which shows that choosing
only one freq. is not more restrictive (asymptotically in τ ) than a
continuous spectrum for uτ
Proposed a weighted Thompson sampling algorithm with better
regret than standard TS
Still... power iterations has better initial transient than MAB
algorithms!
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More information on Matias’ poster!
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Summary

MABs are a useful approach to adaptive control

Standard theory applicable to some problems of iterative
identification and control

A relevant example: H8-norm estimation

Control applications require non-trivial extensions to basic MAB
framework:

Interesting research directions!
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Thank you for your attention!
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