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Linear Dynamical Gaussian State-Space Systems

Linear Dynamical Gaussian State-Space Systems

Discrete time linear state-space system:

xt+1 = Axt + Bεt

yt = Cxt + εt

where {εt} is Gaussian i.i.d. with zero mean and variance
equal to a matrix(parameter) Ω; t = 1, 2, . . . ,T , initial state
x1, state dimension n, and output dimension m.
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Linear Dynamical Gaussian State-Space Systems

Linear Dynamical Gaussian State-Space Systems

Note: This system is in innovations form. This means that the
εt coincide with the prediction error if one predicts the next
observation by the conditional expectation of the output
variable given the previous observations of the output variable.
Note however that time-invariance of the matrices A,B,C ,Ω
has been assumed here, while stationarity of the time series
has NOT been assumed.
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Augmented System

Augmented System

Augmented system:

xt+1 = Axt + B̄ ε̄t

ȳt = C̄ xt + ε̄t

t = 0, 1, . . . ,T , initial state x0 = 0, and

B̄ = [B, x1], C̄ =

[
C
0

]
, ε̄t =

[
εt
δt

]
, ȳt =

[
yt
δt

]
,

yt = εt = 0 for t ≤ 0; δ0 = 1, δt = 0 for t > 0.
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Inverse System

Inverse System

Inverse System:

xt+1 = (A− B̄C̄ )xt + B̄ȳt ,

ε̄t = −C̄ xt + ȳt .

Let Ā := A− B̄C̄ = A− BC . We have

xt =
∑
j≥0

Āj B̄ȳt−j−1, for t ≤ T + 1.
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Inverse System

Inverse System

Let X := [xT , xT−1, . . . , xT ],R := [B̄, ĀB̄, . . . , ĀT−1B̄] and

H̄(y) =


ȳT−1 ȳT−2 . . . ȳ1 ȳ0
ȳT−2 ȳT−3 . . . ȳ0 0

...
...

. . .
...

ȳ1 ȳ0 0 0
ȳ0 0 . . . 0 0


Then

X = R.H̄(y).

Furthermore, let Y = [ȳT , ȳT−1, . . . , ȳ1] and
E = [ε̄T , ε̄T−1, . . . , ε̄1], then

Y = CX + E .
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Likelihood

Likelihood

Likelihood function (negative log likelihood really) for this
model: l(Ā, B̄,C ,Ω) =

log det Ω +
1

T

T∑
t=1

ε′tΩ
−1εt = log det Ω + tr

((
1

T
EE ′
)

Ω−1
)

For given (Ā, B̄,C ) (i.e. given E ) the optimizer for Ω is
Ω̂ =

(
1
T EE ′

)
. The ”concentrated”likelihood, up to an

additive constant, is

l(Ā, B̄,C , Ω̂) = log det

(
1

T
EE ′
)
.
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Concentrated Likelihood

Concentrated Likelihood

For given (Ā, B̄) (i.e. given X = R.H̄(y)) the optimizer for C
is obtained by projection (regression) of Y onto the row space
of X :

Y = ĈX + Ê , where XÊ ′ = X (Y − ĈX )′ = 0

If X has full rank n then
Ĉ = YX ′(XX ′)−1, Ê = Y − YX ′(XX ′)−1X ,
Ê Ê ′ = YY ′ − YX ′(XX ′)−1XY ′.

If the state matrix X0 of a pair (Â0, B̂0) has full rank then the
”concentrated”likelihood function l3(Ā, B̄) is continuous in a
neighbourhood of this pair (and hence in a neighbourhood of
the corresponding parameter vector θ0).
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Rank deficiency of X

Rank deficiency of X

It can be shown that rk X < n implies perfect prediction(s)
for certain components or linear combinations of the outputs
up to the time point T − corank(X ). This can be shown to
imply that the infimum of the negative log-likehood function
is minus infinity. It is possible to detect this possibility by
inspecting whether the nm × (T − n) data matrix

HT
n (y) :=


yT−1 . . . yn
yT−2 . . . yn−1

...
...

yT−n . . . y1


has a non-trivial left kernel. If not then the rank of X will be n
for all pairs (Ā, B̄) for which R has rank n. From now on we
will assume that this is the case, without loss of generality.
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Dependence on the row space of R

Dependence on the row space of R

Note that the concentrated likelihood function is invariant
under a linear state space transformation given by a
non-singular matrix S , say: gives new reachable pair
(SĀS−1, SB̄), corresponding reachability matrix S .R, hence
corresponding state matrix S .X , hence corresponding matrix
Ê Ê ′ = YY ′ − YX ′S ′(SXX ′S ′)−1SXY ′ =
YY ′ − YX ′(XX ′)−1XY ′.

Therefore the likelihood only depends on the row space
row(R) of R.
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Geometry of the row spaces

Geometry of the row spaces

The row spaces all have the same dimension n and hence form
a subset of the collection of all n−dimensional subspaces of
(m + 1)T−dimensional Euclidean space. In geometry this last
collection is called a Grassmannian, which is known to be
compact differential manifold. It follows that the closure of
our family of row spaces of R as a subspace of the Grassmann
manifold must also be compact.

One can ask whether it will also be a differentiable manifold.
This can be answered in the positive by the explicit
construction of an atlas of charts (each chart being an open
subset of Euclidean space of dimension n(m + 1).).
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Backward reachability matrix

Backward reachability matrix

First note that if Ā is invertible, then the row space of R is
the same as that of the matrix (Ā−(T−1)B̄, Ā−(T−2)B̄, . . . , B̄)
which is a ”backward”reachability matrix of the pair
(Āb, B̄b) := (Ā−1, B̄).
In the ”backward”reachability matrix one can allow the matrix
Āb to become singular. This corresponds to one or more of
the eigenvalues of the matrix Ā going to infinity in modulus.
To allow for the possibility that Ā has eigenvalues (going to)
zero as well as eigenvalues ”going to infinity in modulus”, we
can additively decompose the reachable pair (Ā, B̄) into a
reachable pair (Āf , B̄f ), with nf small eigenvalues and a
reachable pair (Ā−1b , B̄b) with nb large eigenvalues, where
nf + nb = n, such that there is a gap between the spectral
radius of Āf and the inverse of the spectral radius of Āb,
where this inverse could possibly be infinity. 11 / 30
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Forward-backward reachability matrix

Forward-backward reachability matrix

The corresponding reachability matrix has row space equal to

row(R) = row

(
B̄f Āf B̄f . . . ĀT−2

f B̄f ĀT−1
f B̄f

ĀT−1
b B̄b ĀT−2

b B̄b . . . ĀbB̄b B̄b

)
Note that the matrix appearing in the right-hand side of this
equation is well-defined even if Āb is singular.

Question: Can we construct a finite set of parametrizations
that cover all cases?
Answer: Yes; this can be done in two steps.
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Finite set of covering parametrizations

Finite set of covering parametrizations

Step 1. Consider
0 < a0 < b0 < a1 < b1 < . . . < an < bn <∞. Then the
closed intervals [a0, b0], [a1, b1], . . . , [an, bn] each have positive
length and are pairwise disjoint. With each j = 0, 1, 2, . . . , n
we associate the set Sj ,nf ,nb of all pairs (Ā, B̄) such that
rk(R(Ā, B̄)) = n and for which nf of the eigenvalues
(multiplicities included) of Ā have modulus less than aj and
nb = n − nf of the eigenvalues (multiplicities included) have
modulus larger than bj .
We claim that each pair (Ā, B̄) with rk(R(Ā, B̄)) = n is
element of Sj ,nf ,nb for at least one value of j ∈ {0, 1, . . . , n}
and nf ∈ {0, 1, . . . , n} while nb = n− nf . Reason is that the n
moduli of eigenvalues of Ā can be member of at most n of the
n + 1 intervals, so one of the intervals can serve as a gap in
the collection of moduli of the spectrum. 13 / 30
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Finite set of covering parametrizations

Finite set of covering parametrizations

Step 2. For each Sj ,nf ,nb we can construct a finite atlas of
local parametrizations. This can be done by existing methods:
Take ρj ∈ (aj , bj), j = 0, 1, 2, . . . , n. Then (ρ−1j Āf , B̄f ) as well

as (ρj Āb, B̄b) form a stable pair in the sense that the spectral
radius of the first matrix of the pair is less than one. Such
stable pairs can be parametrized using input-normal SDPS
(subdiagonal pivot structure) forms, for which a finite atlas
exists (see H-Olivi-Peeters, SYSID 2009). Transformations
between such input-normal forms is performed by orthogonal
state-space transformation matrices.
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Finite set of covering parametrizations

Finite set of covering parametrizations

Note that we obtain a finite set of local parametrizations
covering all cases. Each chart can be taken to be a bounded
nonempty open set in n(m + 1)−dimensional Euclidean space.
It follows that if we can extend the criterion function to the
closure of these charts and if the extension is continuous, then
from topology we know that on the extended space, which is
compact, the criterion function will attain an optimum.
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Regularization

Regularization

However on the extended space the matrix X cannot be
guaranteed to be of full rank n and hence continuity of the
likelihood function cannot be guaranteed. We propose to use
a regularization by replacing (XX ′)−1 in the formula for C by
a well-defined matrix, by replacing each of the singular values
of XX ′ less than δ, where δ > 0 is a chosen treshold value, by
δ. Note that we do not change X elsewhere in the formula(s).
We can show that the resulting regularized likelihood function
is continuous on the extended space. Therefore the minimum
of this regularized likelihood function is attained on the
extended space.
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Lipschitz continuity

Lipschitz continuity

To find the minimum of the regularized likehood function, one
can apply the following technique:

Subdivide the space in a finite number of small pieces, each
one contained in a small ball (this is possible due to the
compactness of the space).

Calculate the value of the criterion function at one point in
each piece. If the variation of the function values within each
piece is small then taking the minimum of the computed
function values gives a good approximation of the true
minimum value over all the points. If we know an upper
bound to the variation within each piece then we also know a
lower bound of the true minimum. We can take the minimum
of the computed function values as the upper bound to the
true minimum.
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Lipschitz continuity

Lipschitz continuity

We can also decide in which pieces the minimum could
possibly be attained and in which pieces this is not the case.

By taking the pieces sufficiently small (e.g. by subdividing
them further) one can make the results arbitrarily precise.

What is required for such a procedure to work is Lipschitz
continuity of the criterion function.

A function f (x) is Lipschitz continuous if there exists a
number L, called a Lipschitz constant, such that for all pairs
of points x1, x2 we have

|f (x1)− f (x2)| ≤ Ld(x1, x2)

where d(x1, x2) denotes the distance between the points x1, x2.
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Lipschitz continuity

Lipschitz continuity

Using a nice result of Wihler(2009) on Hölder continuity of
matrix functions, we can show that the regularized criterion
function is Lipschitz continuous. A Lipschitz constant can be
obtained constructively.
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Recent findings

Recent and astonishing findings

We discovered an astonishing fact. Most easily explained by
considering the scalar order one case: The reachability matrix
of a backward pair (Āb, B̄b), Āb 6= 0 and B̄b = (b1, b2) is

R = [ĀT−1
b B̄b, . . . , ĀbB̄b, B̄b]

and the corresponding states are given by

xt =
t∑

j=1

ĀT−j
b B̄bȳt−j = b1

t−1∑
j=1

ĀT−j
b yt−j+b2Ā

T−t
b , t = 1, 2, . . . ,T .

Therefore we obtain a simple backward recursion

xT = b1

T−1∑
j=1

ĀT−j
b yT−j + b2

xt = Ābxt+1 − b1Ā
T
b yt for t = T − 1,T − 2, . . . , 1.
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Recent findings

Recent and astonishing findings

Now set b1 = −Ā−Tb and b2 = yT − b1
∑T−1

j=1 ĀT−j
b yT−j . Then the

above recursion gives:
xT = yT

xt = Ābxt+1 + yt = yt + Ābyt+1 + . . .+ ĀT−t
b yT , t = T − 1, . . . , 1

and in the limit Āb → 0 one gets a perfect prediction, since
xt → yt . Hence the negative log likelihood goes to minus infinity!
It follows that the maximum likelihood estimator does not exist in
the original model (i.e. in the space without the additional points),
nor in the extended space (i.e. with the additional points) and this
is true whatever the data sequence observed is.
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Recent findings

Recent and astonishing findings

To approach the infimum (=minus infinity) one approximately
encodes in b2 all the data observed! However the
corresponding sequence of Markov parameters
C̄ Āj−1B̄, j = 1, . . . ,T gets extremely large. And the
corresponding model is (of course) completely useless in
practice, as the slightest perturbation in the data will give
extremely large prediction errors.

Using our regularization this infimum will not be reached, as
the relaxation forces the Markov parameters to be bounded!

However the choice of the regularization parameter at times
can have a large effect on the outcome which is unsatisfactory.
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Recent findings

Recent and astonishing findings

Theoretically one should perhaps penalize the amount of
information encoded in the parameters. Usually we measure
that by the dimension of the parameter space. Here one
however encodes an approximation of the whole data
sequence in one scalar parameter so the usual measure of
information appears to break down here!
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Concluding remarks and further research

Concluding remarks and further research

The method described to find the global optimum can be
combined with gradient search. In this way one may speed up
the procedure.

Practical implementation of the methods suggested may
benefit from parallel computing.

It is likely that efficiency gains can be made by working
further on the practical implementation of such algorithms.

Having a good heuristic estimate can also speed up the
procedure, as it may allow for quick elimination of a lot of
points in such an extensive search algorithm (namely if their
criterion function values are bad compared to the one found
with the heuristic method)
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Concluding remarks and further research

Concluding remarks and further research

The global optimization algorithms are likely to be
computationally intensive and may become (too) slow for
larger problems.

Global optimization algorithms can be used to check whether
a given heuristic method produces the global optimum or not
in smaller problems. This may help in fine-tuning such a
heuristic method.
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Concluding remarks and further research

Concluding remarks and further research

The method has brought to light a weakness in the concept of
maximum likelihood for the class of models considered, as the
negative log likelihood always has infimum minus infinity. How
to handle this will require further thought. Using the
regularization avoids the problem but may at times make the
answer very dependent on the precise choice of the
regularization parameter which is an unsatisfactory situation.
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Thank You

Thank you!1

1With thanks to TUWien and INRIA for additional financial support for this
project
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